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abstract: Plant reproduction yields immediate fitness benefits but
can be costly in terms of survival, growth, and future fecundity. Life-
history theory posits that reproductive strategies are shaped by trade-
offs between current and future fitness that result from these direct
costs of reproduction. Plant reproduction may also incur indirect
ecological costs if it increases susceptibility to herbivores. Yet eco-
logical costs of reproduction have received little empirical attention
and remain poorly integrated into life-history theory. Here, we pro-
vide evidence for herbivore-mediated ecological costs of reproduc-
tion, and we develop theory to examine how these costs influence
plant life-history strategies. Field experiments with an iteroparous
cactus (Opuntia imbricata) indicated that greater reproductive effort
(proportion of meristems allocated to reproduction) led to greater
attack by a cactus-feeding insect (Narnia pallidicornis) and that dam-
age by this herbivore reduced reproductive success. A dynamic pro-
gramming model predicted strongly divergent optimal reproductive
strategies when ecological costs were included, compared with when
these costs were ignored. Meristem allocation by cacti in the field
matched the optimal strategy expected under ecological costs of re-
production. The results indicate that plant reproductive allocation
can strongly influence the intensity of interactions with herbivores
and that associated ecological costs can play an important selective
role in the evolution of plant life histories.
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Organisms face decisions regarding when (at what size,
stage, or age) to reproduce and how much (what fraction
of available resources) to invest in each reproductive event.
Reproductive strategies are highly variable within and
among species and fall along a continuum from semel-
parity (single, fatal reproductive event) to iteroparity (mul-
tiple bouts of reproduction distributed across a lifetime).
Understanding the processes that shape reproductive strat-
egies is a central goal in the study of life histories. Theory
posits that because reproduction can be costly, natural
selection should favor life histories that distribute the ben-
efits and costs of reproduction across a lifetime such that
fitness is maximized (Partridge and Harvey 1988; Partridge
et al. 1991; Stearns 1992; Roff 2002). Identifying the costs
of reproduction is therefore critical to our understanding
of life-history evolution.

There is a large body of empirical and theoretical work
examining the costs of reproduction in plants (Harper
1977; Bazzaz and Grace 1997; Primack and Stacey 1998;
Ehrlen and van Groenendael 2001; Obeso 2002; Reekie
and Bazzaz 2005). Nearly all of these studies focus on the
direct, physiological costs of reproduction that arise from
allocation constraints or the inability to simultaneously
maximize all life-history functions. Resources allocated to
vegetative functions (growth/storage) make little or no
contribution to current reproductive output but contrib-
ute to future fitness gains via positive effects on size, prob-
ability of survival, and future fecundity. Conversely, re-
sources allocated to current reproduction can yield
immediate fitness benefits (seeds) but often at the expense
of growth, survival, and future fecundity. Thus, direct costs
of reproduction are driven by trade-offs between current
reproductive output and future reproductive potential.

In addition to direct costs, plant reproduction may also
incur indirect ecological costs. Ecological costs arise from
a change in the frequency of interactions with antagonists
or mutualists in a way that reduces fitness. These are dis-
tinct from direct costs in that ecological costs are mani-
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Figure 1: Dynamics of meristem allocation by tree cholla cacti. The
number of meristems (M) produced in each year is dependent on plant
size, in stem segments (x). Reproductive effort (R) is the proportion of
meristems allocated to reproduction. The total number of seeds produced
by a plant in a given year is determined by the number of meristems
that form flower buds (RM), the proportion of flower buds that do not
abort ( ), and the number of seeds per fruit (s). Meristems allocated1 � A
to stem segments ( ) contribute to plant growth and subsequent[1 � R]M
size.

fested only in the presence of additional interacting species
(Strauss et al. 2002). In plants, ecological costs have re-
ceived most attention in the context of antiherbivore de-
fense. For example, plant traits that deter herbivores can
also deter mutualists (Strauss et al. 1999; Agrawal et al.
2002; Ness 2006), and defenses against particular enemies
can increase susceptibility to others (Da Costa and Jones
1971; Agrawal et al. 1999). This work suggests that eco-
logical costs may influence trait evolution by constraining
responses to selection and shifting phenotypic optima (e.g.,
maximally defended plants may not have maximum fit-
ness). Similarly, plant reproduction may also incur eco-
logical costs if it increases apparency to herbivores (Court-
ney 1985; Prins et al. 1992) or if herbivore abundance and
population growth are positively affected by host plant
reproductive effort (Miller et al. 2006; Miller 2007a). Such
dynamic responses by herbivores to plant allocation could
weaken the fitness returns on reproductive investment and
play a role in the evolution of plant life-history strategies.
Indeed, the significance of ecological reproductive costs
has long been recognized in animal behavioral ecology,
where it has been shown that courtship behaviors and
displays can increase susceptibility to predators (Calow
1979; Tuttle and Ryan 1981; Partridge and Harvey 1988).
In contrast, ecological costs of reproduction in plants have
received little attention (Klinkhamer et al. 1997; Rose et
al. 2005) and remain poorly integrated into plant life-
history theory (Obeso 2002).

Our research focused on the tree cholla (Opuntia im-
bricata), a long-lived (120 year) iteroparous cactus in the
Chihuahuan Desert of central New Mexico. Early in each
growing season, undifferentiated meristems appear on the
terminal ends of cactus branches, and the plant must then
“decide” the fate of each (fig. 1). Meristems allocated to
vegetative growth develop into cylindrical segments, elon-
gate over the growing season, and contribute to plant size
in subsequent years. Meristems allocated to reproduction
develop into flower buds, and those that do not abort
eventually flower, set seed, and disperse as ripe fruits at
the end of the growing season. Prior work suggests that
tree cholla reproductive effort (R)—the proportion of
available meristems that are allocated to reproduction—
positively influences the population dynamics of the cactus
bug (Narnia pallidicornis; Miller et al. 2006; Miller 2007a),
a specialist herbivore.

We conducted field experiments to test the hypothesis
that tree cholla cacti incur indirect ecological costs of re-
production, mediated by the cactus bug. We then devel-
oped theory, motivated by the experimental data, to ex-
amine whether and how ecological costs influence plant
life-history strategies. Our results suggest that dynamic
responses by herbivores to plant reproductive allocation
can play an important role in shaping plant life histories.

Material and Methods

Natural History of Empirical System

The tree cholla cactus (Opuntia imbricata [Haw.] D.C.)
occurs throughout the Chihuahuan Desert and arid grass-
land habitats of the southwest United States (Benson
1982). Tree cholla initiate meristems in early spring. Flow-
ering occurs in June, and the flowers are pollinated by
bees and beetles (McFarland et al. 1989). Unlike other
Opuntia cacti, tree cholla at our study sites does not re-
generate from detached stem segments (Miller 2007c), and
so we focus on seeds as the sole fitness currency.

Throughout its range, tree cholla is attacked by the cac-
tus bug (Narnia pallidicornis Stål [Hemiptera: Coreidae]),
a phloem-feeding insect that specializes on Opuntia cacti
(Mann 1969). There are two overlapping generations per
year in central New Mexico, and juveniles and adults co-
occur throughout the growing season (Miller et al. 2006).
Adults overwinter among debris near the base of the plant,
and females deposit eggs on cactus spines in late spring.
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The first cohort of nymphs reaches maturity in June, and
the second cohort matures in September. Adults are re-
luctant but capable fliers and can move among neighbor-
ing plants, while juveniles are flightless and generally com-
plete their development on a single plant (A. Benhumea
and T. E. X. Miller, unpublished data). Cactus bugs can
feed on all cactus parts but show a preference for repro-
ductive structures (Mann 1969). While a number of other
specialist insects also feed on tree cholla (Miller 2007b,
2007c), cactus bugs are the most abundant herbivores dur-
ing the period of floral development and are the only
herbivores that use the developing flower buds (T. E. X.
Miller, personal observations). Tree cholla and cactus bugs
both commonly occur at the Sevilleta National Wildlife
Refuge (NWR), a long-term ecological research site in cen-
tral New Mexico (http://sev.lternet.edu/), where the field
component of this research was conducted.

Gibberellic Acid Experiment

First, we experimentally manipulated tree cholla meristem
allocation to test the hypothesis that increasing R leads to
increased attack by the cactus bug. In early spring 2006,
as meristems were becoming externally visible but before
any differentiation had occurred, we selected 60 mature
tree cholla in each of two spatial blocks ( ). OnN p 120
April 15, 100%, 50%, or 0% of meristems on each plant
were injected with 0.5 mL of gibberellic acid (GA; 10�4 M
GA3; Fisher Scientific), according to random treatment
assignments. The mean (SEM) number of meristems per
plant was 66.23 (3.18) meristems. GA, a natural plant
hormone, is a mitotic stimulant and inhibits the transition
of cactus meristems from vegetative elongation to floral
development (Pimienta-Barrios and del Castillo 2002). For
the 50% treatment, the meristems injected with GA were
chosen randomly within a plant. For plants in the 0% GA
(control) treatment, all stem segments and flower buds
were injected with GA in late May, once meristem differ-
entiation was complete. This treatment was intended to
control for any unintended effects of GA on plant per-
formance or herbivore abundance. We recorded the value
of R for experimental plants on May 18–19 and counted
the numbers of cactus bugs on each plant on May 18–19,
June 14–15, August 15–16, and September 9–10. We com-
pared reproductive effort and cumulative cactus bug abun-
dance among GA treatments using ANOVA with treatment
and block as fixed and random effects, respectively. We
also used simple linear regression to analyze bug abun-
dance in relation to R for individual sampling dates (see
“State Dynamic Programming Model of Meristem Allo-
cation”).

Herbivore Exclusion Experiment

Second, to evaluate the impacts of herbivory by cactus
bugs on components of plant fitness, we applied insecticide
to tree cholla over four consecutive growing seasons
(2003–2006). This experiment included 30 mature tree
cholla in each of three spatial blocks at the Sevilleta NWR
( ). Blocks were separated by ∼1 km. Within eachN p 90
block, plants were randomly assigned to insecticide, water
control, or dry control treatments. Plants assigned to the
insecticide treatment were sprayed with carbaryl, a non-
systemic carbamate insecticide (0.9 fl oz active ingredient/
gal H2O). In a greenhouse experiment, carbaryl had no
direct effect on plant growth rate ( , ,t p 0.86 df p 18

; see also Miller 2007c). The water control treatmentP p .4
consisted of equal, similarly applied amounts of water, and
dry control plants were unmanipulated. These treatments
were applied to all plants every 2 weeks from early May
to early September of 2004, 2005, and 2006. In addition,
30 plants in one spatial block also received these treatments
every 2 weeks during the 2003 growing season. We quan-
tified cactus bug abundance and tree cholla flower bud
abortions in the spring of each year (2003: June 2–4; 2004:
May 24–27; 2005: May 27–31; 2006: May 21–24). We fo-
cused our analyses on these early-season data to isolate
the impacts of cactus bugs from those of the rest of the
cactus insect community, which emerges later in the season
(T. E. X. Miller, unpublished data). We used repeated-
measures ANOVA to examine the effects of treatment, year,
and interaction on insect abundancetreatment # year
(square root transformed) and the proportion of floral
buds aborted (arcsine–square root transformed). The sta-
tistical model included block as a random effect, an au-
toregressive error structure, and individual plants as the
units of repeated observation. Statistical analyses were con-
ducted using SAS, version 8.2.

State Dynamic Programming Model
of Meristem Allocation

Next, we asked whether the herbivore-mediated costs of
reproduction that we found in the field experiments (see
“Results”) could alter the optimal life-history strategy (the
distribution of reproduction that maximizes lifetime fit-
ness), relative to expectations based solely on direct costs.
To answer this question, we developed a state dynamic
programming (SDP) model of meristem allocation. The
key feature of SDP models is their ability to identify op-
timal decisions, in the face of trade-offs, based on an or-
ganism’s state (Clark and Mangel 2000; Tenhumberg et al.
2001, 2006). The model steps backward through time from
the final time horizon (T), tallies the current and future
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fitness consequences of all possible decisions, and identifies
the decision that maximizes fitness.

Our model is based on the dynamics of cactus meristem
allocation, growth, and reproduction, shown in figure 1.
The decision variable of interest is R, and the correspond-
ing dynamic programming algorithm is

F(x, t) p max (m{RM(1 � A)s
0≤R≤1

� F[x � (1 � R)M, t � 1]}), (1)

where x (the state variable) is size in stem segments, t is
time in years, m is the probability of survival, M is the
number of available meristems, A is the proportion of
flower buds aborted before flowering, and s is the number
of seeds per fruit. Fitness (F) consists of current seed out-
put ( ) plus expected fitness at next year’s size,RM[1 � A]s
determined by the growth increment ( ). With the[1 � R]M
initial condition that fitness at the time of death (T) is 0,
this algorithm identifies, for each time-state combination,
the value of R that maximizes lifetime reproductive success
(and would therefore be favored by natural selection). We
found that the optimal decisions were independent of time
shortly after the initial condition ( ) regardlessF(x, T) p 0
of the absolute life span (T), and so we focus strictly on
size-dependent reproductive effort. We parameterized the
model with empirical data and generated predictions for
the optimal value of R at each plant size (x). While we
built the model with a particular empirical system in mind,
we think that its relatively simple structure offers potential
for broad applicability.

We first generated predictions including direct costs of
reproduction but ignoring any herbivore-mediated eco-
logical costs. The basic model structure (fig. 1) includes
direct costs in the form of size-dependent meristem pro-
duction. Because allocation of individual meristems to
flowering and growth are exclusive alternatives, repro-
duction involves trade-offs with future size, meristem
availability, and potential reproductive output. To estimate
size-dependent meristem production, M(x), we collected
demographic data from 206 tree cholla at the Sevilleta
NWR in 2004 and 2005. We estimated plant size (in stem
segments) by measuring plant height and crown width in
each year, converting these data to volume of a cone (m3),
and dividing the change in volume from 2004 to 2005
(Dm3) by the number of stem segments produced in 2004.
The resulting value, averaged across plants, estimated the
volume increment associated with each segment, and we
used this value to convert volume measurements for each
plant to numbers of segments (x). We used the 2005 re-
lationship between size (x) and meristem production to
estimate M(x) ( , ,M p 4.86 � 0.382x F p 577.29 df p

, , ). Because the model is min-21, 204 P ! .0001 R p 0.74

imally sensitive to changes in this relationship (see fig. A1
in the online edition of the American Naturalist), the re-
sults were qualitatively identical whether we used the 2004
or the 2005 data.

We set the parameter s to 157 seeds per fruit (Miller
2007b) and, in modeling direct costs only, we set the con-
stant floral abortion rate (A) to 0.32 (mean of control
treatments from 2003 to 2006). Model predictions were
insensitive to values for s and A. We have no evidence for
negative effects of reproduction on cactus survival (in fact,
we observed zero mortality in our experimental population
over 4 years), and so we set survival (m) to a constant
value (0.99). Model predictions were not sensitive to var-
iation in m until very low survival probabilities (!0.5), at
which point the optimal strategy was to reproduce max-
imally ( ) across all sizes. To incorporate ecologicalR p 1.0
costs, we modified the “direct costs only” model so that
herbivore damage was responsive to plant reproductive
allocation (see “Influence of Ecological Costs of Repro-
duction on Plant Life-History Strategies”).

Our model, implemented in C��, makes the simpli-
fying assumptions that all stem segments are uniformly
sized, that seed production is not pollen limited, and that
aborted flower buds make zero contribution to fitness. We
maximized the SDP model for both net reproductive rate
(R0) and population growth rate (r). We found that the
results were qualitatively identical, and so we present re-
sults of the simpler R0 maximization.

We compared model predictions with independent data
on tree cholla size-dependent reproductive effort. These
data included 180 plants, representing the population size
structure (i.e., a range from very small to very large in-
dividuals), which were monitored from 2004 to 2006, and
an additional 43 plants monitored from 2003 to 2006. We
pooled all plants and years (trends were consistent across
years) and, to better visualize the distribution, we present
box plots of discretized data at 50-segment intervals.

Results

Evidence for Ecological Costs of Reproduction

Results from two field experiments in central New Mexico
provide strong support for the hypothesis that reproduc-
tion by tree cholla cacti incurs herbivore-mediated eco-
logical costs. First, we generated an experimental gradient
of host plant R. Treatment with GA was effective in re-
ducing reproductive effort (fig. 2A; ,F p 4.91 df p

, ), and cactus bug abundance showed a2, 112 P p .009
strong response to the variation in R (fig. 2A; ,F p 4.09

, ). Attack by cactus bugs was posi-df p 2, 112 P p .019
tively, causally related to host plant reproductive alloca-
tion.
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Figure 2: Evidence for ecological costs of plant reproduction. A, Cu-
mulative cactus bug abundance (May–September) in response to exper-
imentally generated variation in tree cholla reproductive effort (R, the
proportion of meristems allocated to reproduction). Treatments (shown
above circles) indicate the proportion of undifferentiated meristems in-
jected with gibberellic acid. B, Flower bud abortion by host plants in
relation to cactus bug abundance during the period of flower bud de-
velopment (May–June). Each symbol represents a different year of the
experiment ( , , , and invertedtriangle p 2003 square p 2004 circle p 2005

). Within years, treatment groups are differentiated:triangle p 2006
, control, and control.black p insecticide gray p water white p dry

Points and bars represent means and standard errors of the mean.

Second, we evaluated the impacts of herbivory by cactus
bugs on components of plant fitness. In each year of the
experiment (2003–2006), cactus bug abundance was sig-
nificantly lower on insecticide-treated plants than on con-

trol plants, which were either unmanipulated or sprayed
instead with water (fig. 2B; treatment: ,F p 35.67 df p

, ; year: , , ;2, 283 P ! .0001 F p 1.59 df p 3, 284 P p .19
: , , ). Thetreatment # year F p 1.96 df p 6, 283 P p .07

reduction in bug abundance led to a significant reduction
in the proportion of initiated flower buds that were
aborted before flowering (fig. 2B; treatment: ,F p 8.95

, ; year: , ,df p 2, 282 P p .0002 F p 10.73 df p 3, 283
; : , ,P ! .0001 treatment # year F p 1.25 df p 6, 282

). Both within and across years, floral abortionP p .28
increased as the abundance of cactus bugs increased on
experimental plants during the period of flower bud de-
velopment. Plants in the water control and dry control
treatments did not differ in herbivore abundance or floral
abortion (results of preplanned contrasts not shown).
Thus, the two field experiments indicate that tree cholla
reproductive effort led to significant ecological costs: al-
location to reproduction increased attack by specialist her-
bivores, and damage by these insects reduced flowering
success, a key component of plant fitness.

Influence of Ecological Costs of Reproduction on
Plant Life-History Strategies

To incorporate ecological costs of reproduction into
the SDP model, we used data from the GA experiment
to describe the effect of R on early-season bug abun-
dance ( ; , ,bugs p 2.46 � 6.64R F p 9.19 df p 1, 116

; ), and we used data from the insec-2P p .003 R p 0.074
ticide experiment to describe the effect of cactus bug abun-
dance on the flower bud abortion rate (A p 0.18 �

; rate of control plants,0.076 # bugs intercept p abortion
averaged across years; in abortion be-slope p difference
tween control and insecticide plants divided by difference
in bug abundance, averaged across years). We used early-
season data (May and June) from the GA experiment be-
cause insects that occur after the period of flower bud
development can have no effect on the abortion rate. To
simplify sensitivity analyses, we combined these relation-
ships into a single function that links the flower bud abor-
tion rate to reproductive effort ( ; her-A p 0.36 � 0.51R
bivores are implicit in this relationship). This function
represented our empirical estimate of the ecological cost
of reproduction by tree cholla. Under direct costs only,
the slope of this relationship was 0 (i.e., the abortion rate
was constant). To generalize our model to other iteropa-
rous plants with specialist enemies and to evaluate model
sensitivity to uncertainty in parameter estimates, we also
generated predictions under “weak” and “strong” ecolog-
ical costs (50% decrease and increase in the slope of the
A-R relationship [predictions were insensitive to the in-
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Figure 3: Optimal size-dependent reproductive effort (R) predicted by a state dynamic programming (SDP) model. All model predictions include
direct costs of reproduction, but A–F vary in the strength of ecological costs according to the functions shown in the upper left of each panel; these
functions describe the relationship between herbivore-induced floral abortion (A) and reproductive effort (R). A, Direct costs of reproduction only.
B, ecological costs (50% weaker slope of A-R relationship than empirical estimate). C, costs (empirical estimateDirect � weak Direct � ecological
from tree cholla–cactus bug interaction). D, ecological costs (50% greater slope of A-R relationship than empirical estimate). E, F,Direct � strong

(concave and convex, respectively) ecological costs of reproduction.Direct � nonlinear

tercept value]) and alternative functional forms (concave,
convex). These input functions that determine the strength
and shape of ecological costs are shown in the insets of
figure 3.

We found that herbivore-mediated ecological costs of
reproduction strongly influenced the optimal plant life-
history strategy. Including ecological costs in the model
shifted the optimal strategy toward initiating reproduction
at a smaller size and increasing reproductive effort more
gradually with size, compared with predictions based solely
on direct costs of reproduction (fig. 3). Figure 3A shows
predictions based on direct costs only, and figure 3C shows
predictions based on both direct costs and our empirical
estimate of ecological costs. We also generated predictions
for optimal R when ecological costs were 50% weaker (fig.
3B) and 50% stronger (fig. 3D) than our empirical esti-
mates. This sensitivity analysis showed that more severe
ecological costs (stronger responses by herbivores to plant
reproduction and/or stronger fitness impacts of herbivory)
favored the onset of reproduction at smaller sizes and
lower reproductive effort at larger sizes. In addition, dif-
ferences in optimality predictions with versus without eco-
logical costs were also apparent using alternative functional
forms of the floral abortion—reproductive effort relation-

ship (fig. 3E, 3F). However, in the nonlinear models, the
severity of ecological costs varied across plant sizes, and
so their predictions were most similar to the direct costs
model over the size intervals where the A-R relationship
was flattest. Fitness surfaces for the life-history strategies
shown in figure 3 are given in figure A2 in the online
edition of the American Naturalist. These surfaces describe
the fitness consequences of deviations from the optimal
allocation strategy.

The clear contrast in optimality predictions with versus
without herbivore-mediated costs provided competing ex-
pectations for what we should find in nature if, in fact,
ecological costs influence plant reproductive strategies or
if these strategies are driven solely by direct costs. We tested
these alternatives using empirical estimates of tree cholla
size-dependent R that were independent of the data used
to parameterize the model. We found that plants in the
field initiated reproduction at small sizes (∼50 stem seg-
ments) and showed a gradual increase in R with size (fig.
4). Even very large plants (1400 stem segments), on av-
erage, did not allocate more than 65% of their meristems
to flower buds. The empirical pattern qualitatively
matched the reproductive strategy expected under both
direct and ecological costs of reproduction on the basis of
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Figure 4: Comparison of optimal versus observed reproductive effort
(R) by tree cholla cacti in relation to plant size. Lines show optimality
predictions based on direct costs only (dashed line; as in fig. 3A) or based
on direct plus herbivore-mediated ecological costs (solid line; as in fig.
3C). Box plots show median (dots), interquartile (boxes), and twenty-
fifth and seventy-fifth percentiles (lower and upper bars, respectively)
from independent empirical data on tree cholla reproductive effort.

our estimates of tree cholla–cactus bug interactions. By
contrast, the optimality model failed to describe the em-
pirical data when herbivore-mediated costs of reproduc-
tion were ignored (fig. 4).

Discussion

Direct costs of reproduction, resulting from allocation
trade-offs between current and future fitness gains, are
well studied and are widely thought to play an important
role in the evolution of plant life histories (Bazzaz and
Grace 1997; Vuorisalo and Mutikainen 1999; Obeso 2002;
Reekie and Bazzaz 2005). The goals of this study were to
examine the occurrence of additional indirect costs of re-
production, mediated by herbivores, and to evaluate
whether and how these costs influence plant life-history
strategies. Field experiments indicated that increasing re-
productive allocation by tree cholla cacti led to an increase
in the frequency of interactions with cactus bugs and that
these insects, in turn, reduced flowering success (fig. 2),
a major component of fitness. These data provide, to our
knowledge, the first experimental evidence for an indirect,
herbivore-mediated cost of plant reproduction. In an anal-
ogous case study, Roche et al. (1995) found that flowering
Silene alba were more likely to become infected with an
anther-smut fungus (Ustilago violacea) than were non-

flowering plants, as a result of increased activity of pol-
linators (the fungal vectors), though the consequences for
plant reproductive strategies were not considered.

To integrate our empirical results into life-history the-
ory, our theoretical work examined the influence of eco-
logical costs on optimal resource allocation strategies. A
dynamic programming model, parameterized with the ex-
perimental data, showed that herbivore-mediated costs
dramatically influenced the optimal plant reproductive
strategy. When only direct costs were considered, plants
were predicted to maximize lifetime fitness by allocating
meristems exclusively to vegetative growth until reaching
a large size and then rapidly increasing R with size. In this
case, the gains in fecundity at the largest sizes outweighed
the losses of forgoing reproduction at smaller sizes. How-
ever, under both direct and ecological costs of reproduc-
tion, this strategy was no longer viable because large re-
productive events disproportionately attracted flower bud–
feeding insects. When faced with herbivore-mediated costs
of reproduction, plants were expected to maximize lifetime
fitness by initiating reproductive allocation at a much
smaller size and avoiding large reproductive events. Our
sensitivity analysis (fig. 3) showed that as ecological costs
increased in severity, fitness was maximized by an increas-
ingly even distribution of R across the plant size trajectory,
reflecting diminishing returns on high reproductive in-
vestment. Interestingly, when A was constant (direct costs
only), increasing its value had no effect on model predic-
tions (not shown). Thus, fitness impacts of herbivores,
alone, were not sufficient to alter the optimal allocation
strategy. Rather, these impacts must be coupled with a
dynamic response by herbivores to plant allocation.

The reproductive “behavior” of tree cholla in the field
clearly showed the signature of ecological costs of repro-
duction (fig. 4). In contrast, the independent empirical
data were poorly described by the optimality model when
only direct costs were considered. Thus, accounting for
constraints on reproductive allocation imposed by her-
bivores was necessary to explain the tree cholla life history.
These results provide strong support for the hypothesis
that ecological costs of reproduction imposed by flower
bud–feeding herbivores have contributed, over evolution-
ary time, to the contemporary pattern of size-dependent
reproductive effort in this species. This interpretation, as
opposed to a plastic response to current or recent her-
bivore pressure, is supported by experimental data show-
ing no within-generation effects of insect exclusion on tree
cholla reproductive effort (see fig. A3 in the online edition
of the American Naturalist).

The ecological costs model tended to underpredict re-
productive effort, particularly for small plants (fig. 4), and
at least two factors may help explain this result. First, the
fitness surface associated with costsdirect � ecological
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showed that small deviations from the optimal R, at a given
size, would result in only slight reductions in lifetime fit-
ness (fig. A2). In addition, the rather diffuse relationship
between tree cholla reproductive effort and cactus bug
abundance (R explained ∼7% of the variation in bug
counts) could further widen the range of viable allocation
strategies. Thus, our analysis suggests that the allocation
pattern of plants in the field, while not perfectly optimal
at all points in the size distribution, would still confer
relatively high fitness. Second, the SDP model assumes that
all parameter values are constant across a plant’s lifetime.
Theory predicts that temporal fluctuations in the envi-
ronment favor the evolution of “cautious” life histories,
where reproduction occurs more frequently and at smaller
sizes than expected in a constant environment (Cole 1954;
Charlesworth 1994). Accordingly, stochasticity may con-
tribute to the observed greater-than-expected reproductive
effort by small plants.

The model assumption of temporal constancy also raises
the possibility that stochasticity, rather than ecological
costs of reproduction, may account for the mismatch be-
tween the empirical data and the predicted life history
based on direct costs only (fig. 4). Notably, there was sig-
nificant variation in rates of floral abortion among the 4
years of the field experiment (fig. 2B). However, in our
ongoing studies, we have found that including stochasticity
in floral abortion or in the impacts of herbivory on floral
abortion does not alter the predictions of the SDP model.
Rather, stochasticity changes optimal strategies only when
it affects the plant’s state (T. E. X. Miller and B. Tenhum-
berg, unpublished data). Because tree cholla growth in-
crements are far less variable across years than reproduc-
tive success (T. E. X. Miller, unpublished data), we think
that stochasticity, alone, is an unlikely alternative expla-
nation for the life-history patterns we observed in the field.

In conclusion, this study demonstrates that the biotic
environments in which plant life histories evolve are more
dynamic than previously recognized. Antagonists can re-
spond to plant allocation decisions, resulting in distinctly
different reproductive strategies than would be expected
based solely on direct costs of reproduction. Our results
were driven by two key features of the tree cholla–cactus
bug system. First, herbivory increased with plant repro-
ductive effort, and second, herbivores had negative effects
on an important component of plant fitness. Both of these
features appear common in plant-insect interactions; ex-
amples of a positive relationship between plant reproduc-
tion and susceptibility to herbivores (particularly those
that specialize on reproductive structures) are accumulat-
ing in the literature (e.g., Ayal and Izhaki 1993; Johnson
and Agrawal 2005; Miller et al. 2006), and the impacts of
herbivores on plant fitness and reproductive success are
well established (e.g., Doak 1992; Louda and Potvin 1995;

Maron 1998; Ehrlen 2003). On the basis of the strength
of our findings and the potential ubiquity of the driving
mechanisms, we advocate that plant life-history theory
should explicitly account for both direct and indirect eco-
logical costs as selective forces in the evolution of repro-
ductive strategies.
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