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Abstract
Understanding the effects of climate on the vital rates (e.g., survival, development, 
reproduction) and dynamics of natural populations is a long-standing quest in ecol-
ogy, with ever-increasing relevance in the face of climate change. However, linking 
climate drivers to demographic processes requires identifying the appropriate time 
windows during which climate influences vital rates. Researchers often do not have 
access to the long-term data required to test a large number of windows, and are thus 
forced to make a priori choices. In this study, we first synthesize the literature to as-
sess current a priori choices employed in studies performed on 104 plant species that 
link climate drivers with demographic responses. Second, we use a sliding-window 
approach to investigate which combination of climate drivers and temporal window 
have the best predictive ability for vital rates of four perennial plant species that each 
have over a decade of demographic data (Helianthella quinquenervis, Frasera speciosa, 
Cylindriopuntia imbricata, and Cryptantha flava). Our literature review shows that most 
studies consider time windows in only the year preceding the measurement of the 
vital rate(s) of interest, and focus on annual or growing season temporal scales. In 
contrast, our sliding-window analysis shows that in only four out of 13 vital rates the 
selected climate drivers have time windows that align with, or are similar to, the grow-
ing season. For many vital rates, the best window lagged more than 1 year and up to 
4 years before the measurement of the vital rate. Our results demonstrate that for 
the vital rates of these four species, climate drivers that are lagged or outside of the 
growing season are the norm. Our study suggests that considering climatic predictors 
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1  |  INTRODUC TION

Understanding the effects of climate on population dynamics is a 
central, long-standing quest in ecology (Andrewartha & Birch, 1954; 
Sutherland et al., 2013). This topic is increasingly salient because 
climate change is expected to alter dramatically population dy-
namics of many species, which is key for predicting local extinction  
risk and species' range shifts (Bellard et al., 2012; Kelly & Goulden, 
2008; Urban, 2015). In the last decades, ecologists have been work-
ing toward understanding (Harper & White, 1971; Hindle et al., 
2019; Sarukhan, 1974) and, more recently, forecasting the effects of 
climate on population dynamics (Iler et al., 2019; Urban et al., 2016). 
Models that link climate to biological processes such as population 
dynamics (Merow et al., 2014; Pagel & Schurr, 2012) have higher 
predictive ability in novel climates than those based on species oc-
cupancy, such as species distribution models (Zurell et al., 2016). 
However, one challenge in linking climate drivers to demographic 
processes is to identify the appropriate time window during which 
climate influences demography, as well as the specific climatic vari-
able that best predicts vital rates (e.g., temperature, precipitation, 
etc.). This task is challenging because environmental drivers are 
often correlated, researchers often do not know the most relevant 
time window nor environmental variable for plant physiological re-
sponses to climate, and researchers typically do not have access to 
long-term data to analyze different temporal windows (Salguero-
Gómez et al., 2015).

Investigators often link climate drivers to population dynam-
ics based on pre-existing knowledge of their focal species (van de 
Pol et al., 2016). The most common approach for plant species is to 
consider climate within the growing season of the year preceding 
the vital rate(s) (i.e., survival, development, reproduction; e.g., Chu 
et al., 2016; Clark et al., 2011). While these choices are supported 
by strong a priori expectations (e.g., Menges & Quintana-Ascencio, 
2004), some evidence suggests at least two alternative time win-
dows that might provide better predictive ability. First, several stud-
ies show that climate conditions during the dormant season can have 
a substantial effect on vital rates (Fox et al., 1999; Inouye & McGuire, 
1991; Kreyling, 2010). For example, temperature and precipitation 
during the dormant season influence snowpack, which protects 
plants from frost damage through insulation (Groffman et al., 2001). 
A decrease in snowpack has been shown to decrease flower pro-
duction, most likely through frost damage (Boggs & Inouye, 2012; 
Inouye & McGuire, 1991). Second, some researchers have found ev-
idence of lagged effects, in which vital rates are affected by climate 

more than 1 year prior to the year in which vital rates are measured 
(Dalgleish et al., 2011; Hacket-Pain et al., 2018; Tenhumberg et al., 
2018). For example, decreased snowfall can cause a shortage of 
soil water later in the season, depleting an individual's stored re-
sources and thus decreasing growth and survival in the following 
year (Dalgleish et al., 2011). These studies highlight that the most 
appropriate time window of climate to predict vital rates might not 
be during the growing season or the current year.

In the literature, authors also tend to select specific climate vari-
ables, such as temperature and precipitation, a priori, as opposed to 
using a model selection approach. Authors generally select the cli-
mate predictor according to the main limiting factor of the system: 
for example, precipitation in a warm desert (Huxman et al., 2004; 
Noy-Meir, 1973). However, testing alternative climate variables 
is justified when these variables could also affect the limiting re-
sources within a system. For example, in warm deserts, tempera-
ture can deplete soil moisture (Sherry et al., 2008), and therefore 
may be just as likely to predict vital rates as precipitation. Moreover, 
different climate variables could change idiosyncratically during the 
upcoming century (IPCC, 2014), disrupting historical correlations be-
tween climate variables. The choice of climate variable could thus 
affect the accuracy of future predictions.

Recently, new statistical techniques have emerged that facilitate 
selecting a specific climate variable and time window(s) during which 
this climate variable has a high predictive ability (Ogle et al., 2015; 
van de Pol & Cockburn, 2011; Teller et al., 2016). Among these, the 
sliding-window approach (e.g., Brommer et al., 2008; Husby et al., 
2010; van de Pol et al., 2016) compares the predictive ability of 
models whose climate predictor is represented by different time 
windows (Figure  1). If we subdivide a year into months, then the 
“time window” is defined as a time period of consecutive month(s). 
In this scenario, predictive time windows comprise all possible com-
binations of opening (i.e., beginning) and closing (i.e., end) months 
during the year. The climatic predictor is then computed by taking an 
aggregate measure of the monthly climatic values within each win-
dow. Although the sliding-window approach holds much promise in 
increasing predictive ability when linking climatic drivers to demo-
graphic processes, it requires large amounts of data. Using simulated 
datasets, van de Pol et al. (2016) showed that a sample size of 10, 
referred to either years, sites, or both, was enough to detect strong 
climate signals reliably (R2 = 0.4 and 0.8); a sample size of 47 years 
detected weak climate signals (R2 = 0.2). These data requirements 
present a challenge, as the median study duration for plant demog-
raphy research is 5 years (Salguero-Gómez et al., 2015).

that fall outside of the most recent growing season will improve our understanding of 
how climate affects population dynamics.

K E Y W O R D S
carryover effects, environmental driver, lagged effects, plant demography, precipitation, 
sliding window, temperature
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Here we will address two questions. First, we review recent liter-
ature that links climate drivers to plant vital rates to evaluate which 
time windows are used to define climate drivers in plant demographic 
studies. Second, we apply a sliding-window analysis to long-term 
datasets of four temperate perennial plant species (Helianthella quin-
quenervis, Frasera speciosa, Cylindriopuntia imbricata, and Cryptantha 
flava). We focus on several climate variables (temperature, precipi-
tation, snow depth, and a drought index) and ask, for each species: 
when selecting one climate driver, what is the best time window for 
predicting plant vital rate responses to climate? We predicted that 
vital rates will depend mostly on the climate during the respective 
growing seasons of these plants (Angert et al., 2007; Körner, 2003). 
However, by explicitly testing for the time window with the best 
predictive ability, we evaluate how strong the alternative cases are. 
Our analyses aim to clarify whether, and how often, the dormant 
season (Hacket-Pain et al., 2018; Kruuk et al., 2015; Sherry et al., 
2008; Thompson & Ollason, 2001) and lagged effects (Fox et al., 
1999; Harsch et al., 2014; Kreyling, 2010) play a role in the effects of 
climate on plant demographic processes.

2  |  METHODS

2.1  |  Literature review

To create a comprehensive overview of what time windows are 
used to define climate drivers, we conducted a literature review. 
We investigated two aspects of time windows: (i) the relative time 
window(s) within the year that are used (annual, growing season, 

and/or dormant season) and (ii) how far removed the time windows 
are from the census date. We used studies published between 1997 
and 2017 that contain structured population projection models (ei-
ther matrix population models [Caswell, 2001] or integral projec-
tion models [Easterling et al., 2000]) and that linked macro-climatic 
drivers to plant vital rates. We identified these studies performing a 
search on Web of Science using the same Boolean expression em-
ployed by Compagnoni et al. (2020; Appendix S1).

For each study (n = 76 studies), we identified whether the time 
window examined for climate driver(s) was within the growing sea-
son, dormant season, and/or whether it was an annual driver (i.e., 
climate aggregated over a 12-month period). If investigators con-
sidered multiple drivers across different periods, the study was 
assigned to all applicable time windows. For example, a study con-
sidering the effect of annual and growing season precipitation was 
assigned to both the annual and growing season time window. As 
a single study could consider multiple periods, we used Cochran's 
Q tests implemented through the RVAideMemoire package (Hervé, 
2020) in R (R Core Team, 2018) to test whether certain time win-
dows were considered more often than others (annual, growing 
season, and dormant season). When Cochran's Q test identified 
significant differences in the selection of periods, McNemar's χ2 
tests (RVAideMemoire package; Hervé, 2020) were used for fur-
ther pairwise comparisons among the three time windows. Second, 
we identified the length of the timeframe over which climate was 
considered before each demographic census to quantify how many 
studies considered lagged time windows (i.e., occurring more than 
12 months prior to the census month). For each study, we identified 
the census date of the vital rates, whether the climate driver(s) were 

F I G U R E  1  Graphical representation of the sliding-window approach, showing time windows in orange. In this article, the sliding-
window approach is applied for each of the seven climate variables (three temperature variables, precipitation, snowfall, snow depth, and 
Standardized Precipitation–Evapotranspiration Index; SPEI). For each climate variable, models are run including the mean climate variable 
anomaly in all possible time windows within a certain range (in this example, 2 years). Using monthly data, these time windows consist of all 
possible start and end months. In this example, this means that for model 1 the mean monthly temperature anomaly is calculated in the time 
window July 2002. The time window for model 2 is July and June 2002, the time window used for model 3 is July, June and May 2002, etc. 
until model 25 where the time window used are the full 2 years. The time window for model 26 is June 2002, and for model 27 June and 
May, etc., until 300 different time windows are created for temperature over the 2-year timeframe
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temperature-related (mean, minimum, etc.) or precipitation-related 
(including precipitation, snowfall, soil moisture, etc.), and the date 
of the time window(s) considered for the climate driver relative to 
the census date. We chose temperature and precipitation because 
most studies investigated at least one climate driver that could be 
classified as one of these two categories. When a study tested both 
temperature and precipitation, we scored both of these as pres-
ent for the study. We included the presence of a climate driver if it 
was considered by the author, and regardless of significance of the 
results, the model types used, and whether it was analyzed for its 
effect on population growth rate or only one vital rate. We tested 
whether temperature and precipitation were considered equally 
often as possible climate drivers across biomes. As temperature and 
precipitation could both be considered in the same study, we again 
used McNemar's χ2 tests.

2.2  |  Demographic modeling

2.2.1  |  Study species and study sites

To identify which climate variables and time windows best predict 
plant vital rates, we applied the sliding-window analysis to long-term 
datasets. We identified four perennial plant species datasets for our 
demographic modeling that had over a decade of demographic data. 
Our selected species come from biomes whose growing season is 
clearly defined by an abiotic limitation: temperature for montane 
habitats (Bryson, 1974) and precipitation for arid habitats (Huxman 
et al., 2004; Noy-Meir, 1973).

Montane species
We used data collected in the West Elk Range of the Colorado 
Rocky Mountains, USA, on two herbaceous montane plant spe-
cies, Helianthella quinquenervis (Hook.) A. Gray and Frasera speciosa 
Douglas ex Griseb. Helianthella quinquenervis (Asteraceae), the aspen 
sunflower, is a long-lived iteroparous perennial (Inouye & Taylor, 
1979) for which three populations were censused across its elevation 
range for up to 15 years (Iler et al., 2019). In this study, we used data 
from 1998 to 2012 for the “mid” population (38°57.5′N, 106°59.3′W, 
2886 m a.s.l.), 2005 to 2012 for the “high” population (38°58.612′N, 
106°58.690′W, 3407 m a.s.l.), and 1999 to 2012 for the “low” popu-
lation (38°51.774′N; 107°09.556′W, 2703 m a.s.l.). Frasera speciosa 
(Gentianaceae), the monument plant or green gentian, is a long-lived 
semelparous perennial (Inouye, 1986) whose population was cen-
sused in an alpine meadow at 3750 m, near Cumberland Pass (Che-
Castaldo & Inouye, 2011). This population was censused for 47 years 
(1973–2019).

Populations of both H. quinquenervis and F. speciosa were cen-
sused annually in July, which is in the middle of the growing season 
(roughly June–August, Iler et al., 2019). Each census measured sur-
vival, size, reproduction, and the number of reproductive structures 
of each plant. Size was measured as the number of rosettes for H. 
quinquenervis and as the number of leaves in the basal rosette for F. 

speciosa. The reproductive measurements of H. quinquenervis and F. 
speciosa are the number of flowering stalks and the number of flow-
ers, respectively. Climate data for the three H. quinquenervis popu-
lations were estimated using PRISM (PRISM Climate Group, Oregon 
State University, n.d.) because separate weather stations were not 
available for each population (Figure S1.1). Climate data for the sin-
gle population of F. speciosa come from the closest NOAA (National 
Oceanic and Atmospheric Administration, USA) weather station that 
has data going back to the 1970s (18 km away from the population, 
Figure  S1.2), retrieved using the R package rnoaa (Chamberlain, 
2019).

Arid species
We used data from a cactus, Cylindriopuntia imbricata (Haw.) DC., 
and an herbaceous perennial, Cryptantha flava L. (A. Nelson) Payson. 
For C. imbricata (Cactaceae), the tree cholla cactus, we used 15 years 
of data (2004–2018) from a population located at the Sevilleta 
National Wildlife Refuge, a Long-Term Ecological Research site (SEV-
LTER) in central New Mexico, USA (34°20′5.3″N, 106°37′53.2″W, 
1660  m a.s.l.; see [Miller et al., 2009] and [Ohm & Miller, 2014] 
for more details). Cryptantha flava (Boraginaceae), Brenda's yellow 
cryptantha, is a short-lived iteroparous perennial. The data used in 
this study come from a population near Redfleet State Park, Utah, 
USA (40°35′42.63″N, 109°25′55.92″W, 1790 m a.s.l.). Demographic 
monitoring was set up in several plots, distributed among six blocks 
(see Lucas et al., 2008 for details). The dataset contains 16 years of 
demographic information (1997–2012; Salguero-Gómez et al., 2012).

Annual demographic censuses were conducted in May for both 
species, coinciding with the beginning of the growing season for C. 
imbricata (May–September; Miller et al., 2009) and C. flava (April–
July; Salguero-Gómez et al., 2012). Each census measured survival, 
size changes (growth/shrinkage), probability of reproduction, and 
number of reproductive structures of each individual. For C. imbri-
cata, size measures consisted of plant height, maximum width, and 
the width perpendicular to the maximum width. Cryptantha flava's 
size was measured as the number of rosettes. Reproductive struc-
tures quantified during the annual censuses were flower buds and 
flowering rosettes for C. imbricata and C. flava, respectively. Climate 
data for C. imbricata were obtained from the nearest climate station 
of the SEV-LTER (<0.1  km, Figure  S1.3, Moore, 2016). Data for C. 
flava came from the nearest NOAA station (16.6 km, Figure S1.4).

2.2.2  |  Analyses

2.2.1 | Baseline models
We modeled vital rates based on generalized linear mixed models 
that followed previous studies published by the data originators. 
Because of data limitations, and for consistency with previous lit-
erature, all vital rate models are density-independent. Testing for 
density dependence would require data on the location of each indi-
vidual and possibly the location of other species, which are not avail-
able for our species. Baseline models did not include climate drivers, 
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were size-dependent, and included year as a random intercept. We 
used a log-transformed size predictor in all models to improve model 
fit. For C. imbricata, size was calculated as the log-transformed vol-
ume (cm3) of an individual, calculated as a cone using plant height 
and average width. For H. quinquenervis in every baseline model, 
population was added as a fixed effect (Iler et al., 2019) and block 
was used as a fixed effect for C. flava (Salguero-Gómez et al., 2012). 
Plot identity was added to every baseline model for C. imbricata as a 
random effect (Elderd & Miller, 2016).

Survival and changes in size were modeled as dependent on 
the size in the previous year (Table S3.1). Because F. speciosa is se-
melparous, survival for this species was modeled conditional on not 
flowering. Data for C. flava suggested senescence, with decreased 
survival at larger sizes; therefore, the survival baseline for this vital 
rate also included a quadratic response to size (Table  S3.1) as we 
assume size correlates with age. For H. quinquenervis, C. imbricata, 
and C. flava, flowering probability and number of reproductive struc-
tures were modeled as a function of size during the same census 
(Table  S3.1). For F. speciosa, the flowering probability and flower 
numbers (in year t + 1) were modeled as dependent on size of the 
previous census (year t). In this species, size was not measured at 
the time of flowering (except for flowering stalk height and number 
of flowers).

Survival and flowering probability were modeled as Bernoulli re-
gressions. Because the size measure of C. imbricata is continuous, 
the size change model for this species was modeled as a Gaussian 
regression. The size change model of the other species, which have 
count data as size variables, was modeled as Poisson regressions. 
Flower numbers also consisted of count data and thus were also 
modeled as Poisson regressions. See Table S3.1 for an overview of 
the full set of baseline models.

2.2.2 | Climate variables
We tested a total of seven climate variables for F. speciosa and five 
climate variables for the other species, based on monthly tempera-
ture or monthly precipitation anomalies. Previous studies have 
shown that temperature, precipitation, snow cover, and drought 
indices (which integrate temperature and precipitation) can be key 
drivers of population dynamics (e.g., Dalgleish et al., 2011; Doak & 
Morris, 2010; Salguero-Gómez et al., 2012; Siepielski et al., 2017; 
Tenhumberg et al., 2018). We used climate anomalies rather than 
absolute values because plants are expected to be adapted to their 
mean climate (Peterson et al., 2018), and should therefore respond to 
climatic anomalies. We considered both average and extreme tem-
perature anomalies because climate extremes have also been shown 
to influence vital rates (Easterling, Meehl, et al., 2000). Specifically, 
mean minimum and mean maximum temperature should correlate 
with limitations to vegetation processes. For example, the mean 
minimum temperature should influence nighttime respiration costs 
(Criddle et al., 1997; Maier et al., 1998; Wright et al., 2006) while 
the mean maximum temperature should influence photorespiration 
costs (Hagemann & Bauwe, 2016). The monthly climate variables in-
cluded total precipitation (P), mean average daily temperature (Tavg), 

mean maximum daily temperature (Tmean_max), and mean minimum 
daily temperature (Tmean_min). We used precipitation data, and the 
latitude of our study populations, to calculate a drought index, the 
Standardized Precipitation–Evapotranspiration Index (SPEI), on a 
scale of 12 months, using the SPEI R package (Beguería & Vicente-
Serrano, 2017). Finally, for F. speciosa, we also included monthly 
snowfall (Sfall) and mean snow depth (Sdepth). Sfall and Sdepth were not 
available for the separate populations of the other montane species, 
H. quinquenervis. We used P, SPEI, Sfall, Sdepth, and Tavg to quantify the 
cumulative effect of water availability and temperature on vegeta-
tion processes. We used Sfall, and Sdepth to account for the physical 
effects of snow. Finally, we used Tmin_mean and Tmax_mean to quantify 
the effect of climatic extremes in driving demographic rates.

We calculated climate anomalies as a z-score, by subtracting the 
monthly climate mean from each annual monthly value, and divid-
ing by the standard deviation of the monthly climate. We calculated 
the means and standard deviations of monthly climate across a min-
imum period of 30 years (World Meteorological Organization, 2017). 
However, for C. imbricata, we could only calculate climate anomalies 
for the 20-year period (1998–2018) during which climate data were 
available.

We computed the climatic predictors of our generalized linear 
models using the climate observed from the start of the annual cen-
sus backwards (e.g., if survival was measured in mid-July 2018, we 
considered the monthly climate anomalies starting in July 2018; see 
Figure 1). Our demographic datasets consist of censuses made on 
the same month each year. As a result, the start and end months of 
the range tested for climate signals were the same across years for 
each species.

Our time range started from the census where the response 
variable was measured (e.g., survival or flower probability). Thus, 
for all vital rates and species except for F. speciosa, our range in-
cludes the month during which the response variable was mea-
sured in year t + 1, and the preceding 36 months. For F. speciosa, 
we considered a more extended range; 6  years for survival and 
size changes, and 4 years for fertility. While this increased range 
increased the possibility of spurious correlations, previous re-
search indicates that this species commits to flowering 4  years 
before flowering (Inouye, unpublished), and increases the number 
of leaves in the rosette every 4 years on average (Inouye, 1986), 
suggesting it may be particularly slow growing and prone to lagged 
climate effects.

2.2.3 | Sliding-window analysis
We identified the climate driver with the best ability to predict 
demographic rates using the sliding-window approach (van de Pol 
et al., 2016, Figure 1), implemented with the climwin package (Bailey 
& van de Pol, 2016) in R (R Core Team, 2018). This package compares 
the predictive ability of models that include climate from all pos-
sible time windows within a specified time frame (range). Because 
our data are monthly, possible time windows include windows of 
1-month duration, 2-month duration, and all the way up to the full 
extent of the range tested. Moreover, all possible starting months 
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were considered for each window duration. In other words, a time 
window of 2  months could start 2  months before and end at the 
census date, or it could start 7  months before and end 5  months 
before the census month. Subdividing a range of 3  years into the 
constituting 36 months implies testing the predictive ability of 703 
time windows of each climate driver for each response variable. The 
monthly climate variables were aggregated within each window by 
taking the mean.

The sliding-window analysis included a single linear effect of cli-
mate for each vital rate and species. This resulted in a total of seven 
models for each vital rate for the montane species, and five models 
for each vital rate of the arid species, for which the predictive ability 
of all time windows was tested. We selected the best model (and 
thus best climate driver) using AICc. We subtracted the AICc of the 
baseline models (i.e., models not considering climate) from the AICc 
of the climate models. The climate driver with the lowest AICc was 
selected for further analysis. We focus on identifying a single, best 
climate variable for each vital rate. Additional climate variables may 
also predict vital rates, and over different timeframes, but our goal 
was to assess whether the best climatic predictor occurred within 
a timeframe that is typically considered (e.g., the growing season). 
Additionally, adding multiple climatic predictors would amplify the 
number of climate windows, increasing the chance of spurious cor-
relations (see section below). Finally, we evaluated the predictive 
ability of our selected climate driver models. This was done by com-
paring the AICc scores of the selected climate driver models with the 
models using the same climate variable observed during the most 
recent growing season.

2.2.4 | Potential for spurious correlations
Due to the high number of windows tested in our analysis, we ex-
amined potential spurious correlations between the climate driv-
ers and vital rates. There are two ways in which selected models 
might reflect a spurious relationship. First, due to the high number 
of models tested, significant climate signals could arise by chance. 
Second, there may be a correlation between the selected climate 
driver and other time windows and/or climate variables. To address 
the first possibility, we used a randomization procedure that rand-
omizes the date of the demographic data (van de Pol et al., 2016). 
This randomization removed the observed correlation between re-
sponse variable and climatic drivers. However, this randomization 
maintained the original data structure, as well as the structure of 
the climate variables. Then, we re-ran the sliding-window analysis 
described above, saving the AICc of the best model. This model se-
lection was done 2000 times, creating a distribution of the best 
AICc values obtained on each randomized dataset. This distribution 
was then used to test whether the AICc of the best model found in 
the sliding-window analysis is due to chance, indicating a spurious 
correlation.

To address the second possibility that there is a correlation be-
tween the selected climate driver and other climate drivers, we in-
vestigated the influence of correlation between competing climatic 
windows. While high correlations would not decrease the predictive 

abilities of the selected climate drivers, they could indicate that the 
causal relationship could be found in other time windows and/or 
climate variables. We first quantified the autocorrelation between 
the selected climate window, and all other competing windows. We 
then also tested the correlation between the selected climate win-
dow and the climate windows of all the climate variables that were 
not selected.

3  |  RESULTS

3.1  |  Literature review

Out of 76 studies (Table S1.1) with 246 different populations of 103 
plant species, few considered the possibility of climate effects in 
the dormant season, or the possibility of lagged effects. The stud-
ies had a mean duration of 8.04 years (with a range of 1–40 years). 
A total of 11 studies had a duration greater than 15 years, and all 
studies selected climate drivers a priori, rather than using a model 
selection approach such as the sliding window. We found that re-
searchers do not consider different periods (annual, growing, and 
dormant season) equally when examining the effects of tempera-
ture (χ2 = 7.294, df = 2, p = 0.026) and precipitation (χ2 = 19.471, 
df = 2, p < 0.001) on vital rates (Figure 2). When authors consid-
ered temperature as a possible climate variable, the growing season 
was considered significantly more often than the dormant season 
(χ2 = 8.642, df = 1, p = 0.003). Moreover, a tendency emerged for 
climate effects in an annual period to be investigated more often 

F I G U R E  2  The literature review reveals that 25% or fewer 
studies examining temperature and precipitation as climate drivers 
explicitly consider climate during the dormant season. Studies that 
include temperature and/or precipitation drivers are categorized 
by the periods within the year over which climate is considered as a 
potential driver (annual, dormant season, and growing season). The 
black lines indicate studies that explicitly include dormant season 
as a possible climate driver
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than in the dormant season (χ2 = 3.375, df = 1, p = 0.066). When 
authors investigated precipitation, the annual timeframe was most 
commonly considered (Figure  2). Authors considered the annual 
period (χ2  =  15.625, df  =  1, p  <  0.001) and the growing season 
(χ2 = 5.063, df = 1, p = 0.024) significantly more often than the dor-
mant season. Additionally, authors also investigated precipitation 
during an annual period more often than during the growing season 
(χ2 = 4.5, df = 1, p = 0.034).

A total of 85% of the examined studies (n = 65 out of 76 studies) 
considered windows inside the transition year only (Figure 3b shows 
Arid studies; all studies can be found in Figures S1.1 and S1.2). Of 
the 11 studies including lagged windows, only six considered two 
full years prior to the census. Finally, only the publications from arid 
biomes had a strong preference of one type of climate driver over 
the other. Studies in arid regions investigated precipitation climate 
drivers significantly more often (χ2 = 9.091, n = 17, df = 1, p = 0.003) 
than temperature.

3.2  |  Demographic modeling

3.2.1  |  Potential for spurious correlations

Randomizations showed that of the 16 climate signals detected, 13 
had a significantly low chance of being spurious results (p < 0.05; 

Appendix S6). On the other hand, the climate drivers selected for 
the survival of F. speciosa (p = 0.369; Figure S6.5) and for the size 
changes and flower numbers in C. imbricata (p = 0.217; Figure S6.10 
and p = 0.520; Figure S6.12, respectively) did have a chance of being 
spurious. We therefore did not present the results for these three 
climate drivers.

Correlation results showed that shorter windows have fewer 
auto-correlations or correlations with other climate variables (e.g., 
Figure S9.4), whereas longer windows have many other neighboring 
windows that are highly correlated, both within the same climate 
variable and in others (e.g., Figure S9.14). Correlation was more com-
mon between the temperature climate variables (e.g., Figure S9.1), 
between P and SPEI (e.g., Figure  S9.6), and between snowfall and 
depth (e.g., Figure  S9.5). Correlation was less common between P 
and SPEI, and between the temperature and snow variables (but see 
Figures S9.9 and S9.12).

3.2.2  |  Sliding-window analysis

We found that in many cases the climate variable most predictive of 
demographic rates fell outside of the growing season, and many cli-
matic predictors were lagged (i.e., their effect occurred farther back 
than one transition year; Figure  4). One climate driver had a time 
window that resembled the growing season: average temperature 

F I G U R E  3  Few studies consider 
climate drivers more than 12 months 
prior to the census month. (a) shows the 
hypothetical example with written climate 
driver descriptions and the appropriate 
time windows in graphical form. (b) 
shows the subset of studies conducted in 
arid regions. The time windows that are 
considered in studies conducted in two 
biomes; arid and temperate coniferous 
forest relative to the census of the 
response variable. Few studies consider 
the potential for lagged effects (climate 
drivers more than 12 months prior to 
the census). Both precipitation and 
temperature drivers are included

(a)

(b)
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for C. imbricata survival extends 1 month before and after the grow-
ing season (Figure 4). Other windows included only 1 month during 
the growing season or fell fully outside the growing season (e.g., C. 
flava survival and F. speciosa changes in size, respectively, Figure 4). 
Moreover, lagged windows were common: out of the 13 non-spuri-
ous time windows, six open and close before the transition year (i.e., 
>1 year before the census in time t), and one window closes in the 
transition year, but opens in year t − 1 (C. flava flower probability, 
Figure 4). We also found windows spanning more than 12 months. 
We found that eight of the 13 best climate predictors were related 
to temperature. Finally, all but one of the selected models with a 
time window different from the growing season had AICc scores that 
were at least 2 units lower than models with time windows in the 
recent growing season (Appendix S5).

For H. quinquenervis, we found that precipitation (P) from July in 
year t − 1 (Julyt−1) to January in year t − 1 (Januaryt−1) has the best pre-
dictive ability for survival from year t to year t + 1 (with 59.32 AIC units 
lower than the baseline; from now on presented as ΔAICc = −59.32; 
Figure  4; Table  S5.1). P in this time period has a positive effect on 
survival of H. quinquenervis (Figure  5). An increase of two standard 
deviations (from mean −SD to mean +SD) changed survival probabil-
ity of an average-sized individual from 79.5% to 96.0% (Figure S8.1). 
Size changes were best predicted by P from Julyt−1 to Decembert−1 
(ΔAICc = −51.33; Figure 4; Table S5.2). P during this time window had 
a positive effect on H. quinquenervis (Figure 5). An increase of 2-SD in 
P increased the size in year t + 1 by 43.8% (for an average-sized indi-
vidual; Figure S8.1). Flower probability was best predicted by mean 
maximum temperature (Tmean_max) in Septembert−1 (ΔAICc  =  −67.2; 

Figure 4; Table S5.3). A 2-SD increase in Tmean_max decreased flower 
probability from 85.0% to 1.5% (Figure  6; Figure  S8.2). Finally, the 
number of flowering stalks was best predicted by P from Julyt−2 to 
Julyt+1 (ΔAICc = −31.66; Figure 4; Table S5.4), which is the full time 
range in our analysis. An increase of 2-SD increased the number of 
flowering stalks by 70.2% (Figure 6; Figure S8.2).

Frasera speciosa changes in size were best predicted by P in 
Septembert−3 to Aprilt−3 (ΔAICc  =  −9.52; Figure  4; Table  S5.6), 
where an increase of 2-SD decreased size in t + 1 by 4.1% (Figure 5; 
Figure  S8.1). Flower probability was best predicted by Tmean_max 
from Marcht−3 to Mayt−3 (ΔAICc  =  −11.69; Figure  4; Table  S5.7), 
when a 2-SD increase increases flower probability from 0.02% to 
0.16% (Figure 6; Figure S8.2). Finally, average temperature (Tavg) in 
Augustt−3 best predicted the number of flowers (ΔAICc  =  −12.99; 
Figure 4; Table S5.8). A 2-SD increase in temperature increased the 
number of flowers by 38.0% (Figure 6; Figure S8.2). All vital rates of 
F. speciosa had at least one secondary climate variable whose pre-
dictive ability was close to the best models (i.e., within 2 AICc units; 
Tmean_max, P, and Tmean_max for size changes, flower probability and 
flower numbers, respectively; Table S5.6–5.8).

Our results show that for C. imbricata, survival was best pre-
dicted by Tavg from Aprilt−1 to Octobert (ΔAICc  =  −8.43; Figure  4; 
Table S5.9). An increase in temperature of 2-SD during this period 
decreased survival probability (Figure  5) from 98.7% to 95.9% for 
an average-sized individual (Figure S8.1). There was also a second 
climate variable with a ΔAICc score that was within 2 units of the 
selected survival model (Tmean_max; Table S5.9). The best predictor for 
flower probability was Tavg from Decembert−1 to Mayt (ΔAICc = −9.88; 

F I G U R E  4  The climate drivers that best predict vital rates in Helianthella quinquenervis, Frasera speciosa, Cylindriopuntia imbricata, and 
Cryptantha flava mostly fall outside the growing season and before the first year prior to the population census. For each vital rate and each 
species, the time window with the best predictive ability is shown with blue horizontal lines. The best driver is listed on the right side of 
the graph. The grid lines indicate census months and the shaded areas show the time range considered in the sliding-window analysis. The 
dashed areas indicate the growing seasons for each population
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Figure 4; Table S5.11), where flower probability increased from 0.9% 
to 5.9% with a 2-SD increase in Tavg (Figure 6; Figure S8.2).

Finally, for C. flava, the best predictor for survival probabil-
ity was Tmean_min in Mayt (ΔAICc  =  −12.71; Figure  4; Table  S5.13). 
Survival decreased from 79.5% to 63.0% with a 2-SD increase of 
Tmean_min in this period (Figure 5; Figure S8.1). The second best cli-
mate variable for predicting survival (Tmean_max from Septembert to 
Januaryt) also had a low ΔAICc score (ΔAICc = −12.35). Changes in 
size were best predicted by P from Dect−2 to Aprilt−1 (ΔAICc = −14.03; 
Figure 4; Table S5.14). Average-sized individuals in year t were 27.9% 
smaller in t + 1 when P increased with 2-SD in this period (Figure 5; 
Figure  S8.1). Flower probability was best predicted by P from 
Decembert−1 to Februaryt (ΔAICc = −13.07; Figure 4; Table S5.15). A 
2-SD increase in P increased flower probability of an average-sized 
individual from 10.5% to 31.3% (Figure  6; Figure  S8.2). The num-
ber of flowering rosettes was also best predicted by P, but from 
Decembert to Aprilt (ΔAICc = −12.14; Figure 4; Table S5.16). Number 
of flowering rosettes increased by 54.3% with a 2-SD increase in 
precipitation over this timeframe (Figure 6; Figure S8.2).

4  |  DISCUSSION

Changes in climate are projected to be heterogeneous across space 
and time (IPCC, 2014). Thus, it is important for ecologists to select 
the right climate variables and time windows to understand and 
forecast responses of their specific study systems/locations to cur-
rent and future climate (van de Pol et al., 2016). We found that plant 
population ecologists typically only consider in their demographic 
models the climate during the transition year, over either annual 
or growing season time frames. This choice makes the implicit as-
sumption that climatic effects on vital rates—and thus emergent 
population dynamics—are short term. However, our sliding-window 
analyses reveal that in the four species for which we have long-term 
(>10 years) demographic data, lagged windows are the rule rather 
than the exception. Moreover, our analyses demonstrated that the 
influence of climate drivers on demography often occurred outside 
of the most-recent growing season. Thus, these results indicate 
that lagged climate variables and dormant season climate might 
be important drivers of plant population dynamics. Consequently, 

F I G U R E  5  The model prediction for 
survival and changes in size with the 
best climate driver plotted against the 
datapoints for Helianthella quinquenervis 
(“mid” population), Frasera speciosa, 
Cylindriopuntia imbricata, and Cryptantha 
flava (Block I). Climate effect was 
calculated on three levels; mean climate 
anomaly during this time window as 
well as + and – one standard deviation 
climate anomaly. The vertical blue lines 
are the mean size of the individuals used 
to parameterize the models. Data used 
for the model parameterization are also 
plotted. In the survival column, the points 
are the binned proportions of survival, 
with the size of the points proportional to 
the number of observations in each bin. 
The points in the changes of size column 
are individual observations
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investigators are justified in considering dormant season and lagged 
climate as (a priori) climate predictors.

Our results suggest that lagged climate might commonly medi-
ate the effect of climate on vital rates. The literature provides some 
key examples of how a lagged effect of climate could result from 
physiological mechanisms. For instance, in Astragalus scaphoides, 
Tenhumberg et al. (2018) found a lagged negative effect of spring 
precipitation on survival. This lagged effect was linked to the bian-
nual flowering peaks of this species (Crone & Lesica, 2004) where 
a large proportion of individuals flower after a wet spring. This 
flowering peak led to depleted non-structural carbohydrate stores 
in the following year (Crone et al., 2009), which negatively influ-
enced survival (Tenhumberg et al., 2018). The prevalence of lagged 
effects we report here across our species could result from similar 
physiological mechanisms. Correlating residuals from the changes 
in size models from 1 year to the next revealed significant negative 
relationships for H. quinquenervis and F. speciosa (data not shown), 
but not C. flava. This finding suggests that the former two species 

could be similarly limited by resources after a year of better than 
average growth.

Another way in which plant physiology might result in lagged 
climate effects is the preformation of leaves and inflorescences. 
Belowground bud banks are common among herbaceous plants 
(Ott et al., 2019). For instance, in alpine environments, up to 
4 years can be required for each leaf and inflorescence to progress 
from initiation to functional and structural maturity (e.g., Diggle, 
1997; Garcia et al., 2011). This preformation happens in F. speciosa 
as well 4 years before emergence (Inouye, 1986). Accordingly, the 
climate most influential to the changes in number of leaves and 
flowering probability in F. speciosa occurs 4 years before the cen-
sus (Figure 4). Our second result on flowering probability agrees 
with another analysis carried out on this same F. speciosa dataset. 
Flowering by F. speciosa is correlated with summer precipitation 
4  years prior to inflorescence emergence (Inouye, in prep). Our 
analysis selected mean maximum temperature, rather than precip-
itation occurring 4 years prior to flowering as the best predictor 

F I G U R E  6  The model prediction 
for flower probability and numbers 
with the best climate driver plotted 
against the datapoints for Helianthella 
quinquenervis (“mid” population), Frasera 
speciosa, Cylindriopuntia imbricata, and 
Cryptantha flava (Block I). Climate effect 
was calculated on three levels; mean 
climate anomaly during this time window 
as well as + and – one standard deviation 
climate anomaly. The vertical blue lines 
are the mean size of the individuals 
used to parameterize the models. In the 
probability column, the points are the 
binned proportions of flower probability 
with the size of the points proportional to 
the number of observations in each bin. 
The points in the number column are the 
individual observations
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of flowering probability; however, precipitation was a close sec-
ond best model (Table  S5.7). Temperature was also a significant 
predictor of flowering, with a 2-year lag, of Veratrum tenuipeta-
lum (Melanthiaceae) in the same habitats as lower-altitude Frasera 
populations (Iler & Inouye, 2013).

An alternative hypothesis to explain lagged climate drivers during 
the dormant season is their indirect effects. Indirect effects of climate 
drivers occur when these influence certain biotic drivers, such as soil 
microbiomes or pollinators, rather than plant physiology. Examples 
include the reported long, lagged window in which precipitation has 
a negative effect on the growth of C. flava. Yu et al. (2019) showed 
that under wetter conditions, B. eriopoda, a C4 grass, had a competitive 
advantage over C. imbricata. Indirect effects can also include inter-
specific (Aschehoug et al., 2016) or intraspecific density dependence 
(Dahlgren et al., 2016). Specifically, lagged climate drivers for survival 
could point to intraspecific density dependence, but we do not find 
such lagged climate drivers for our species. Previous authors who em-
phasized the importance of dormant season climate also pointed to 
indirect biotic effects (Kreyling, 2010; Stahl et al., 2006). Accordingly, 
biotic drivers are known to have large effects on population growth 
rates (Morris et al., 2020). Identifying possible indirect effects of cli-
mate on vital rates would require additional data on, for example, in-
sect populations (Stahl et al., 2006) or the soil community (Bever et al., 
1997; Maherali, 2020), and is an exciting area for future research.

The mechanisms by which dormant season climate influences 
vital rates likely depend on the habitat. For example, snow cover du-
ration during the dormant season might be important for vital rates 
of montane and cold desert species such as C. flava (which requires 
vernalization to flower), whereas physiological activity outside of 
the growing season might be important for arid species. In the mon-
tane species F. speciosa, the dormant season was important for size 
changes and flower probability. Less precipitation during the win-
ter might be linked to earlier snow melt, a longer growing season, 
and more growth. An earlier snow melt might also correlate with 
a warmer Tmean_max, which led to a higher probability of flowering. 
Snow melt timing generally has a substantial effect on the dynamics 
or physiology of alpine plant populations (Campbell, 2019; Iler et al., 
2019; Wipf et al., 2009). However, it is possible that dormant sea-
son snowfall and snow depth anomalies do not correlate well with 
snow melt timing, or that the ecological effects of snow cover on 
vital rates might be nonlinear (e.g., because snow cover insulates the 
ground only above the 40 cm threshold; Cline, 1997).

The climate driver that best predicted the flowering of our arid 
species, C. imbricata, is most likely linked to the importance of phys-
iological processes during the dormant season. Both our results and 
Czachura and Miller (2020) found that flowering probability was 
positively affected by temperature anomalies observed during the 
dormant season. Wetter and cooler seasons might allow dormant 
season photosynthetic activity, as has been documented in other 
species, such as winter annuals (Regehr & Bazzaz, 1976) and conifers 
in oceanic climates (Waring & Franklin, 1979).

We hypothesize that the diversity of selected climate vari-
ables and time windows could explain an earlier finding showing 

mostly uncorrelated vital rates in C. imbricata and H. quinquenervis 
(Compagnoni et al., 2016). Specifically, our results suggest that vital 
rates might fluctuate independently because they respond to a di-
versity of climatic windows, climate drivers, and effect sizes. Testing 
this hypothesis would also require ruling out the effect of other fac-
tors producing positive or negative correlations among vital rates, 
such as density dependence and individual-level trade-offs between 
vital rates.

Despite the computational burden of our sliding-window analy-
ses, we still make assumptions that could be relaxed by more com-
plex models. First, we assumed that each month within the time 
window is equally important. However, generalized additive models 
(Teller et al., 2016) and regularization (Tredennick et al., 2017) can 
estimate the effect sizes, and therefore the relative importance, of 
single monthly or seasonal climate anomalies. This could be espe-
cially important in the long windows such as the flower numbers 
of H. quinquenervis, which includes several growing and dormant 
seasons. Second, we focused on selecting only one climate driver 
per vital rate, which allowed us to address the main question of this 
article: what are the best climate variables and time windows for our 
species, and how do these relate to what is common in the literature? 
However, other research questions could benefit from selecting 
multiple drivers (van de Pol et al., 2016), for example, when maximiz-
ing predictive ability of predicting population trends under climate 
change. Finally, we did not consider more complex relationships be-
tween climate and vital rates, such as nonlinear effects (Ehrlén et al., 
2016), density dependence (Gornish, 2013), climate and size inter-
actions (Iler et al., 2019), and interactions between vital rate param-
eters. Including these factors could increase the predictive ability 
of vital rate models or even change the climate driver selected. Our 
approach is an important first step in assessing the relative impor-
tance of climate conditions that fall outside of typically considered 
time windows in studies of plant demography.

When selecting the best climate driver, closely related time win-
dows, or different climate variables can have similar model support. 
Selecting among climate variables, nine of our vital rates had a cli-
mate variable with a much lower ΔAICc (at least 2 units) than all other 
variables (e.g., Table S5.2), but other vital rates had at least one other 
climate variable with ΔAICc scores close to the best climate driver 
(e.g., Table  S5.6). This lack of a clear winner could indicate highly 
correlated climate drivers, complex relations between vital rates and 
climate mentioned previously or a strong influence of more than one 
climate driver (van de Pol et al., 2016). When multiple models have 
similar support, investigators can opt to perform model averaging. 
However, the ability of these models to predict future responses to 
climate might still be low. For example, when correlations between 
separate climate drivers are high, it may be impossible to establish 
causality. This is especially relevant when predicted climatic changes 
include novel correlations between climatic drivers (IPCC, 2014).

In this analysis, we have used large-scale, macro-climatic predic-
tors which, however, can differ from the micro-climate experienced 
by plants (Scherrer & Körner, 2010). This can be especially important 
when investigating plant populations in spatially variable habitats, 
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such as montane grasslands (Körner, 2003; Oldfather & Ackerly, 
2019). Because it is currently unclear how climatic anomalies cor-
relate at the macro- and micro-scale, employing micro-climatic con-
ditions in a sliding-window analysis could improve our understanding 
of timeframes over which climate affects vital rates.

Our results motivate several recommendations for researchers 
with shorter-term datasets for which the sliding-window method 
may not—yet—be feasible, and for those with longer-term datasets. 
In short-term datasets, a sliding-window method has a high chance 
of not detecting the climate signal, or identifying true signals as spu-
rious through the randomization tests (van de Pol et al., 2016). We 
therefore suggest to first compare the predictive ability of climatic 
predictor types over larger and fewer timeframes (e.g., “dormant sea-
son temperature”), rather than continuously sliding climatic windows. 
According to our findings, these climate predictors should include 
both precipitation and temperature during the growing season, the 
dormant season, and in previous years. Second, considering natural 
history information (e.g., presence of belowground bud banks, or of 
dormant season physiological activity) when selecting climate drivers 
can improve the chance of selecting relevant time periods (includ-
ing lagged time windows). Third, with shorter datasets, researchers 
should account for potential overfitting, for example by performing 
cross-validation (Wenger & Olden, 2012) or by fitting regularized re-
gression models (Dahlgren, 2010). Finally, for the researchers with 
longer-term datasets, we encourage the use of model selection meth-
ods to select climate drivers. In these cases, it is vital to consider the 
life-history information of their specie(s) to select a time range that 
allows for appropriate lagged effects. This time range should include 
climate drivers during the growing and dormant season.

ACKNOWLEDG EMENTS
This research was funded by the Alexander von Humboldt 
Foundation (Alexander von Humboldt Professorship of TMK), the 
Helmholtz Recruitment Initiative of the Helmholtz Association to 
TMK, and iDiv (German Research Foundation FZT 118). Research 
on H. quinquenervis and F. speciosa was supported by funding to 
DWI from the National Science Foundation, grants BSR 81-08387, 
DEB 75-15422, DEB 78-07784, DEB 94-08382, IBN 98-14509, DEB 
0238331, DEB 0922080, DEB 1354104, and DEB 1912006. The 
C. imbricata study was supported by the Sevilleta LTER (NSF LTER 
awards 1440478, 1655499, and 1748133) and by NSF Division of 
Environmental Biology awards 1543651 and 1754468 to TEXM. 
RS-G was supported by NERC IRF NE/M018458/1. Research on C. 
flava was supported by NSF grant IBN95-27833 to Brenda B. Casper, 
Sigma Xi Aid-in-Research to RS-G, Lewis and Clark fund for explo-
ration and field research to RS-G, and funds from the Max Planck 
Institute for Demographic Research to RS-G. Open Access funding 
enabled and organized by ProjektDEAL.

DATA AVAIL ABILIT Y S TATEMENT
The demographic datasets of all four species used for the demo-
graphic modeling are available online (H. quinquenervis; https://
doi.org/10.5061/dryad.863c8sk, Frasera speciosa; https://osf.io/

qubhx/, Cylindriopuntia imbricata; https://doi.org/10.6073/pasta/​
dd06d​f3f95​0afe4​a4642​30618​2237d13, Cryptantha flava; https://
doi.org/10.6084/m9.figsh​are.c.33065​37.v1. The R code used in 
all the analyses is available on GitHub at github.com/SanneE1/
Climate-windows.

ORCID
Sanne M. Evers   https://orcid.org/0000-0002-8002-1658 
Tiffany M. Knight   https://orcid.org/0000-0003-0318-1567 
David W. Inouye   https://orcid.org/0000-0003-2076-7834 
Tom E. X. Miller   https://orcid.org/0000-0003-3208-6067 
Roberto Salguero-Gómez   https://orcid.org/0000-0002-6085-4433 
Amy M. Iler   https://orcid.org/0000-0002-3354-7593 
Aldo Compagnoni   https://orcid.org/0000-0001-8302-7492 

R E FE R E N C E S
Andrewartha, H. G., & Birch, L. C. (1954). The distribution and abundance 

of animals. University of Chicago Press.
Angert, A. L., Huxman, T. E., Barron-Gafford, G. A., Gerst, K. L., & 

Venable, D. L. (2007). Linking growth strategies to long-term popu-
lation dynamics in a guild of desert annuals. Journal of Ecology, 95(2), 
321–331. https://doi.org/10.1111/j.1365-2745.2006.01203.x

Aschehoug, E. T., Brooker, R., Atwater, D. Z., Maron, J. L., & Callaway, 
R. M. (2016). The mechanisms and consequences of interspecific 
competition among plants. Annual Review of Ecology, Evolution, and 
Systematics, 47, 263–281. https://doi.org/10.1146/annur​ev-ecols​
ys-12141​5-032123

Bailey, L. D., & van de Pol, M. (2016). climwin: An R toolbox for climate 
window analysis. PLoS One, 11(12), e0167980. https://doi.org/​
10.1371/journ​al.pone.0167980

Beguería, S., & Vicente-Serrano, S. M. (2017). SPEI: Calculation of the 
Standardised Precipitation-Evapotranspiration Index. https://cran.r-
proje​ct.org/packa​ge=SPEI

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. 
(2012). Impacts of climate change on the future of biodiversity. 
Ecology Letters, 15(4), 365–377. https://doi.org/10.1111/j.1461-​
0248.2011.​01736.x

Bever, J. D., Westover, K. M., & Antonovics, J. (1997). Incorporating the soil 
community into plant population dynamics: The utility of the feedback 
approach Published by: British Ecological Society Stable URL: http://
www.jstor.org/stable/2960528. Journal of Ecology, 85(5), 561–573.

Boggs, C. L., & Inouye, D. W. (2012). A single climate driver has direct and 
indirect effects on insect population dynamics. Ecology Letters, 15(5), 
502–508. https://doi.org/10.1111/j.1461-0248.2012.01766.x

Brommer, J. E., Rattiste, K., & Wilson, A. J. (2008). Exploring plas-
ticity in the wild: Laying date–temperature reaction norms in 
the common gull Larus canus. Proceedings of the Royal Society B: 
Biological Sciences, 275(1635), 687–693. https://doi.org/10.1098/
rspb.2007.0951

Bryson, R. A. (1974). A perspective on climate change. Science, 184(4138), 
753–760.

Campbell, D. R. (2019). Early snowmelt projected to cause population 
decline in a subalpine plant. Proceedings of the National Academy 
of Sciences of the United States of America, 116(26), 12901–12906. 
https://doi.org/10.1073/pnas.18200​96116

Caswell, H. (2001). Matrix population models: Construction, analysis, and 
interpretation (2nd ed.). Sinauer Associates. Inc.

Chamberlain, S. (2019). rnoaa: “NOAA” Weather Data from R. https://
cran.r-proje​ct.org/packa​ge=rnoaa

Che-Castaldo, J. P., & Inouye, D. W. (2011). The effects of dataset 
length and mast seeding on the demography of Frasera speciosa, 

https://doi.org/10.5061/dryad.863c8sk
https://doi.org/10.5061/dryad.863c8sk
https://osf.io/qubhx/
https://osf.io/qubhx/
https://doi.org/10.6073/pasta/dd06df3f950afe4a4642306182237d13
https://doi.org/10.6073/pasta/dd06df3f950afe4a4642306182237d13
https://doi.org/10.6084/m9.figshare.c.3306537.v1
https://doi.org/10.6084/m9.figshare.c.3306537.v1
http://github.com
https://orcid.org/0000-0002-8002-1658
https://orcid.org/0000-0002-8002-1658
https://orcid.org/0000-0003-0318-1567
https://orcid.org/0000-0003-0318-1567
https://orcid.org/0000-0003-2076-7834
https://orcid.org/0000-0003-2076-7834
https://orcid.org/0000-0003-3208-6067
https://orcid.org/0000-0003-3208-6067
https://orcid.org/0000-0002-6085-4433
https://orcid.org/0000-0002-6085-4433
https://orcid.org/0000-0002-3354-7593
https://orcid.org/0000-0002-3354-7593
https://orcid.org/0000-0001-8302-7492
https://orcid.org/0000-0001-8302-7492
https://doi.org/10.1111/j.1365-2745.2006.01203.x
https://doi.org/10.1146/annurev-ecolsys-121415-032123
https://doi.org/10.1146/annurev-ecolsys-121415-032123
https://doi.org/10.1371/journal.pone.0167980
https://doi.org/10.1371/journal.pone.0167980
https://cran.r-project.org/package=SPEI
https://cran.r-project.org/package=SPEI
https://doi.org/10.1111/j.1461-0248.2011.01736.x
https://doi.org/10.1111/j.1461-0248.2011.01736.x
https://doi.org/10.1111/j.1461-0248.2012.01766.x
https://doi.org/10.1098/rspb.2007.0951
https://doi.org/10.1098/rspb.2007.0951
https://doi.org/10.1073/pnas.1820096116
https://cran.r-project.org/package=rnoaa
https://cran.r-project.org/package=rnoaa


    |  1939EVERS et al.

a long-lived monocarpic plant. Ecosphere, 2(11), 1–18. https://doi.
org/10.1890/ES11-00263.1

Chu, C., Kleinhesselink, A. R., Havstad, K. M., McClaran, M. P., Peters, 
D. P., Vermeire, L. T., Wei, H., & Adler, P. B. (2016). Direct effects 
dominate responses to climate perturbations in grassland plant 
communities. Nature Communications, 7(1), 11766. https://doi.
org/10.1038/ncomm​s11766

Clark, J. S., Bell, D. M., Hersh, M. H., & Nichols, L. (2011). Climate change 
vulnerability of forest biodiversity: Climate and competition track-
ing of demographic rates. Global Change Biology, 17(5), 1834–1849. 
https://doi.org/10.1111/j.1365-2486.2010.02380.x

Cline, D. W. (1997). Snow surface energy exchanges and snowmelt at 
a continental, midlatitude Alpine site. Water Resources Research, 
33(4), 689–701. https://doi.org/10.1029/97WR0​0026

Compagnoni, A., Bibian, A. J., Ochocki, B. M., Rogers, H. S., Schultz, E. 
L., Sneck, M. E., Elderd, B. D., Iler, A. M., Inouye, D. W., Jacquemyn, 
H., & Miller, T. E. X. (2016). The effect of demographic correla-
tions on the stochastic population dynamics of perennial plants. 
Ecological Monographs, 86(4), 480–494. https://doi.org/10.1002/
ecm.1228

Compagnoni, A., Levin, S., Childs, D. Z., Harpole, S., Paniw, M., Römer, 
G., Burns, J. H., Che-Castaldo, J., Rüger, N., Kunstler, G., Bennett, J. 
M., Archer, C. R., Jones, O. R., Salguero-Gómez, R., & Knight, T. M. 
(2020). Short-lived plants have stronger demographic responses to 
climate. bioRxiv. https://doi.org/10.1101/2020.06.18.160135

Criddle, R. S., Smith, B. N., & Hansen, L. D. (1997). A respiration based 
description of plant growth rate responses to temperature. Planta, 
201(4), 441–445. https://doi.org/10.1007/s0042​50050087

Crone, E. E., & Lesica, P. (2004). Causes of synchronous flowering in 
Astragalus scaphoides, an iteroparous perennial plant. Ecology, 85(7), 
1944–1954. https://doi.org/10.1890/03-0256

Crone, E. E., Miller, E., & Sala, A. (2009). How do plants know when 
other plants are flowering? Resource depletion, pollen limitation 
and mast-seeding in a perennial wildflower. Ecology Letters, 12(11), 
1119–1126. https://doi.org/10.1111/j.1461-0248.2009.01365.x

Czachura, K., & Miller, T. E. X. (2020). Demographic back-casting reveals 
that subtle dimensions of climate change have strong effects on 
population viability. Journal of Ecology, 108(6), 2557–2570. https://
doi.org/10.1111/1365-2745.13471

Dahlgren, J. P. (2010). Alternative regression methods are not consid-
ered in Murtaugh (2009) or by ecologists in general. Ecology Letters, 
13(5), E7–E9. http://doi.org/10.1111/j.1461-0248.2010.01460.x

Dahlgren, J. P., Bengtsson, K., & Ehrlén, J. (2016). The demography of cli-
mate-driven and density-regulated population dynamics in a perennial 
plant. Ecology, 97(4), 899–907. https://doi.org/10.1890/15-0804.1

Dalgleish, H. J., Koons, D. N., Hooten, M. B., Moffet, C. A., & Adler, P. 
B. (2011). Climate influences the demography of three dominant 
sagebrush steppe plants. Ecology, 92(1), 75–85. https://doi.org/​
10.1890/​10-0780.1

Diggle, P. K. (1997). Extreme preformation in alpine Polygonum viviparum: 
An architectural and developmental analysis. American Journal of 
Botany, 84(2), 154–169. https://doi.org/10.2307/2446077

Doak, D. F., & Morris, W. F. (2010). Demographic compensation and 
tipping points in climate-induced range shifts. Nature, 467(7318), 
959–962. https://doi.org/10.1038/natur​e09439

Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., 
& Mearns, L. O. (2000). Climate extremes: Observations, modeling, 
and impacts. Science, 289, 2068–2074. https://doi.org/10.1126/
scien​ce.289.5487.2068

Easterling, M. T., Ellner, S. P., & Dixon, P. M. (2000). Size-specific sensi-
tivity: Applying a New Structured Population Model. Ecology, 81(3), 
694–708.

Ehrlén, J., Morris, W. F., von Euler, T., & Dahlgren, J. P. (2016). Advancing 
environmentally explicit structured population models of plants. 
Journal of Ecology, 104(2), 292–305. https://doi.org/10.1111/​
1365-2745.12523

Elderd, B. D., & Miller, T. E. X. (2016). Quantifying demographic uncer-
tainty: Bayesian methods for integral projection models. Ecological 
Monographs, 86(1), 125–144. https://doi.org/10.1890/15-1526.1

Fox, L. R., Ribeiro, S. P., Brown, V. K., Masters, G. J., & Clarke, I. P. (1999). 
Direct and indirect effects of climate change on St John's wort, 
Hypericum perforatum L. (Hypericaceae). Oecologia, 120(1), 113–122. 
https://doi.org/10.1007/s0044​20050839

Garcia, M. B., Dahlgren, J. P., & Ehrlén, J. (2011). No evidence of senes-
cence in a 300-year-old mountain herb. Journal of Ecology, 99(6), 
1424–1430. https://doi.org/10.1111/j.1365-2745.2011.01871.x

Gornish, E. S. (2013). Effects of density and fire on the vital rates and 
population growth of a perennial goldenaster. AoB PLANTS, 5, 1–11. 
https://doi.org/10.1093/aobpl​a/plt041

Groffman, P. M., Driscoll, C. T., Fahey, T. J., Hardy, J. P., Fitzhugh, R. D., & 
Tierney, G. L. (2001). Colder soils in a warmer world: A snow manipula-
tion study in a northern hardwood forest ecosystem. Biogeochemistry, 
56(2), 135–150. https://doi.org/10.1023/A:10130​39830323

Hacket-Pain, A. J., Ascoli, D., Vacchiano, G., Biondi, F., Cavin, L., 
Conedera, M., Drobyshev, I., Liñán, I. D., Friend, A. D., Grabner, M., 
Hartl, C., Kreyling, J., Lebourgeois, F., Levanič, T., Menzel, A., van 
der Maaten, E., van der Maaten-Theunissen, M., Muffler, L., Motta, 
R., … Zang, C. S. (2018). Climatically controlled reproduction drives 
interannual growth variability in a temperate tree species. Ecology 
Letters, 21(12), 1833–1844. https://doi.org/10.1111/ele.13158

Hagemann, M., & Bauwe, H. (2016). Photorespiration and the potential 
to improve photosynthesis. Current Opinion in Chemical Biology, 35, 
109–116. https://doi.org/10.1016/j.cbpa.2016.09.014

Harper, J. L., & White, J. (1971). The dynamics of plant populations. In 
Proceedings of the Advanced Study Institute on 'Dynamics of Numbers 
in Populations', Oosterbeek, the Netherlands, 7-18 September 1970 
(pp. 41–63).

Harsch, M. A., McGlone, M. S., & Wilmshurst, J. M. (2014). Winter cli-
mate limits subantarctic low forest growth and establishment. PLoS 
One, 9(4), 1–8. https://doi.org/10.1371/journ​al.pone.0093241

Hervé, M. (2020). RVAideMemoire: Testing and Plotting Procedures for 
Biostatistics. https://cran.r-proje​ct.org/packa​ge=RVAid​eMemoire

Hindle, B. J., Pilkington, J. G., Pemberton, J. M., & Childs, D. Z. (2019). 
Cumulative weather effects can impact across the whole life cycle. 
Global Change Biology, 25(10), 3282–3293. https://doi.org/10.1111/
gcb.14742

Husby, A., Nussey, D. H., Visser, M. E., Wilson, A. J., Sheldon, B. C., & Kruuk, 
L. E. B. (2010). Contrasting patterns of phenotypic plasticity in repro-
ductive traits in two great tit (Parus major) populations. Evolution, 64(8), 
2221–2237. https://doi.org/10.1111/j.1558-​5646.2010.00991.x

Huxman, T. E., Smith, M. D., Fay, P. A., Knapp, A. K., Shaw, M. R., Loik, M. 
E., Smith, S. D., Tissue, D. T., Zak, J. C., Weltzin, J. F., Pockman, W. 
T., Sala, O. E., Haddad, B. M., Harte, J., Koch, G. W., Schwinning, S., 
Small, E. E., & Williams, D. G. (2004). Convergence across biomes to 
a common rain-use efficiency. Nature, 429(6992), 651–654. https://
doi.org/10.1038/natur​e02561

Iler, A. M., Compagnoni, A., Inouye, D. W., Williams, J. L., Caradonna, 
P. J., Anderson, A., & Miller, T. E. X. X. (2019). Reproductive losses 
due to climate change-induced earlier flowering are not the pri-
mary threat to plant population viability in a perennial herb. 
Journal of Ecology, 107(4), 1931–1943. https://doi.org/10.1111/​
1365-2745.13146

Iler, A. M., & Inouye, D. W. (2013). Effects of climate change on 
mast-flowering cues in a clonal montane herb, Veratrum tenuipet-
alum (Melanthiaceae). American Journal of Botany, 100(3), 519–525. 
https://doi.org/10.3732/ajb.1200491

Inouye, D. W. (1986). Long-term preformation of leaves and inflo-
rescences by a long-lived perennial monocarp, Frasera speciosa 
(Gentianaceae). American Journal of Botany, 73(11), 1535–1540. 
https://doi.org/10.1002/j.1537-2197.1986.tb109​03.x

Inouye, D. W., & McGuire, A. D. (1991). Effects of snowpack on timing 
and abundance of flowering in Delphinium nelsonii (Ranunculaceae): 

https://doi.org/10.1890/ES11-00263.1
https://doi.org/10.1890/ES11-00263.1
https://doi.org/10.1038/ncomms11766
https://doi.org/10.1038/ncomms11766
https://doi.org/10.1111/j.1365-2486.2010.02380.x
https://doi.org/10.1029/97WR00026
https://doi.org/10.1002/ecm.1228
https://doi.org/10.1002/ecm.1228
https://doi.org/10.1101/2020.06.18.160135
https://doi.org/10.1007/s004250050087
https://doi.org/10.1890/03-0256
https://doi.org/10.1111/j.1461-0248.2009.01365.x
https://doi.org/10.1111/1365-2745.13471
https://doi.org/10.1111/1365-2745.13471
http://doi.org/10.1111/j.1461-0248.2010.01460.x
https://doi.org/10.1890/15-0804.1
https://doi.org/10.1890/10-0780.1
https://doi.org/10.1890/10-0780.1
https://doi.org/10.2307/2446077
https://doi.org/10.1038/nature09439
https://doi.org/10.1126/science.289.5487.2068
https://doi.org/10.1126/science.289.5487.2068
https://doi.org/10.1111/1365-2745.12523
https://doi.org/10.1111/1365-2745.12523
https://doi.org/10.1890/15-1526.1
https://doi.org/10.1007/s004420050839
https://doi.org/10.1111/j.1365-2745.2011.01871.x
https://doi.org/10.1093/aobpla/plt041
https://doi.org/10.1023/A:1013039830323
https://doi.org/10.1111/ele.13158
https://doi.org/10.1016/j.cbpa.2016.09.014
https://doi.org/10.1371/journal.pone.0093241
https://cran.r-project.org/package=RVAideMemoire
https://doi.org/10.1111/gcb.14742
https://doi.org/10.1111/gcb.14742
https://doi.org/10.1111/j.1558-5646.2010.00991.x
https://doi.org/10.1038/nature02561
https://doi.org/10.1038/nature02561
https://doi.org/10.1111/1365-2745.13146
https://doi.org/10.1111/1365-2745.13146
https://doi.org/10.3732/ajb.1200491
https://doi.org/10.1002/j.1537-2197.1986.tb10903.x


1940  |    EVERS et al.

Implications for climate change. American Journal of Botany, 78(7), 
997–1001. https://doi.org/10.1002/j.1537-2197.1991.tb145​04.x

Inouye, D. W., & Taylor Jr, O. R. (1979). A temperate region plant-ant-
seed predator system: Consequences of extra floral nectar secre-
tion by Helianthella quinquenervis. Ecology, 60(1), 1–7.

IPCC. (2014). Climate change 2014: Synthesis report. Contribution of 
working groups I, II and III to the fifth assessment report of the 
Intergovernmental Panel on Climate Change [Core Writing Team, R. K. 
Pachauri & L. A. Meyer (Eds.)]. IPCC. https://doi.org/10.1177/00027​
16295​54100​1010

Kelly, A. E., & Goulden, M. L. (2008). Rapid shifts in plant distribution 
with recent climate change. Proceedings of the National Academy 
of Sciences of the United States of America, 105(33), 11823–11826. 
https://doi.org/10.1073/pnas.08028​91105

Körner, C. (2003). Alpine Plant Life, second edition. https://doi.
org/10.1007/978-3-642-18970​-8

Kreyling, J. (2010). Winter climate change: a critical factor for temperate 
vegetation performance. Ecology, 91(7), 1939–1948.

Kruuk, L. E. B., Osmond, H. L., & Cockburn, A. (2015). Contrasting ef-
fects of climate on juvenile body size in a Southern Hemisphere 
passerine bird. Global Change Biology, 21(8), 2929–2941. https://doi.
org/10.1111/gcb.12926

Lucas, R. W., Forseth, I. N., & Casper, B. B. (2008). Using rainout shel-
ters to evaluate climate change effects on the demography of 
Cryptantha flava. Journal of Ecology, 96(3), 514–522.

Maherali, H. (2020). Mutualism as a plant functional trait: Linking varia-
tion in the mycorrhizal symbiosis to climatic tolerance, geographic 
range, and population dynamics. International Journal of Plant 
Sciences, 181(1), 9–19. https://doi.org/10.1086/706187

Maier, C. A., Zarnoch, S. J., & Dougherty, P. M. (1998). Effects of tempera-
ture and tissue nitrogen on dormant season stem and branch mainte-
nance respiration in a young loblolly pine (Pinus taeda) plantation. Tree 
Physiology, 18(1), 11–20. https://doi.org/10.1093/treep​hys/18.1.11

Menges, E. S., & Quintana-Ascencio, P. F. (2004). Population viability 
with fire in Eryngium cuneifolium: Deciphering a decade of de-
mographic data. Ecological Monographs, 74(1), 79–99. https://doi.
org/10.1890/03-4029

Merow, C., Latimer, A. M., Wilson, A. M., Mcmahon, S. M., Rebelo, A. G., 
& Silander, J. A. (2014). On using integral projection models to gen-
erate demographically driven predictions of species' distributions: 
Development and validation using sparse data. Ecography, 37(12), 
1167–1183. https://doi.org/10.1111/ecog.00839

Miller, T. E. X., Louda, S. M., Rose, K. A., & Eckberg, J. O. (2009). Impacts 
of insect herbivory on cactus population dynamics: experimen-
tal demography across an environmental gradient. Ecological 
Monographs, 79(1), 155–172. https://doi.org/10.1890/07-1550.1

Moore, D. (2016). Meteorology Data from the Sevilleta National Wildlife 
Refuge, New Mexico (1988-present) ver 13. Environmental Data 
Initiative. https://doi.org/10.6073/pasta/​4d71c​09b24​26021​14fb6​
84c84​3e9d6ac

Morris, W. F., Ehrlén, J., Dahlgren, J. P., Loomis, A. K., & Louthan, A. M. 
(2020). Biotic and anthropogenic forces rival climatic/abiotic factors 
in determining global plant population growth and fitness. Proceedings 
of the National Academy of Sciences of the United States of America, 
117(2), 1107–1112. https://doi.org/10.1073/pnas.19183​63117

Noy-Meir, I. (1973). Desert ecosystems: Environment and producers. 
Annual Review of Ecology, Evolution, and Systematics, 4(1), 25–51.

Ogle, K., Barber, J. J., Barron-Gafford, G. A., Bentley, L. P., Young, J. M., 
Huxman, T. E., Loik, M. E., & Tissue, D. T. (2015). Quantifying eco-
logical memory in plant and ecosystem processes. Ecology Letters, 
18(3), 221–235. https://doi.org/10.1111/ele.12399

Ohm, J. R., & Miller, T. E. X. (2014). Balancing anti-herbivore benefits 
and anti-pollinator costs of defensive mutualists. Ecology, 95(10), 
2924–2935. https://doi.org/10.1890/13-2309.1

Oldfather, M. F., & Ackerly, D. D. (2019). Microclimate and demography 
interact to shape stable population dynamics across the range of 

an alpine plant. New Phytologist, 222(1), 193–205. https://doi.org/​
10.1111/nph.15565

Ott, J. P., Klimešová, J., & Hartnett, D. C. (2019). The ecology and sig-
nificance of below-ground bud banks in plants. Annals of Botany, 
123(7), 1099–1118. https://doi.org/10.1093/aob/mcz051

Pagel, J., & Schurr, F. M. (2012). Forecasting species ranges by statistical 
estimation of ecological niches and spatial population dynamics. 
Global Ecology and Biogeography, 21(2), 293–304. https://doi.org/​
10.1111/j.1466-8238.2011.00663.x

Peterson, M. L., Doak, D. F., & Morris, W. F. (2018). Both life-history 
plasticity and local adaptation will shape range-wide responses to 
climate warming in the tundra plant Silene acaulis. Global Change 
Biology, 24(4), 1614–1625. https://doi.org/10.1111/gcb.13990

PRISM Climate Group, Oregon State University. (n.d.). http://prism.orego​
nstate.edu

R Core Team. (2018). R: A language and environment for statistical comput-
ing. https://www.r-proje​ct.org/

Regehr, D. L., & Bazzaz, F. A. (1976). Low temperature photosynthesis in 
successional winter annuals. Ecology, 57(6), 1297–1303.

Salguero-Gomez, R., Jones, O. R., Archer, C. R., Buckley, Y. M., Che-
Castaldo, J., Caswell, H., Hodgson, D., Scheuerlein, A., Conde, D. 
A., Brinks, E., de Buhr, H., Farack, C., Gottschalk, F., Hartmann, A., 
Henning, A., Hoppe, G., Roemer, G., Runge, J., Ruoff, T., … Vaupel, J. 
W. (2015). The COMPADRE Plant Matrix Database: An open online 
repository for plant demography. Journal of Ecology, 103(1), 202–
218. https://doi.org/10.1111/1365-2745.12334

Salguero-Gómez, R., Siewert, W., Casper, B. B., & Tielbörger, K. (2012). 
A demographic approach to study effects of climate change in des-
ert plants. Philosophical Transactions of the Royal Society B: Biological 
Sciences, 367(1606), 3100–3114. https://doi.org/10.1098/rstb.2012.​
0074.

Sarukhan, J. (1974). Studies on plant demography: Ranunculus Repens L., 
R. Bulbosus L. and R. Acris L.: II. Reproductive strategies and seed 
population dynamics. Journal of Ecology, 62(1), 151–177.

Scherrer, D., & Körner, C. (2010). Infra-red thermometry of alpine land-
scapes challenges climatic warming projections. Global Change 
Biology, 16(9), 2602–2613. https://doi.org/10.1111/j.1365-2486.​
2009.02122.x

Sherry, R. A., Weng, E., Arnone III, J. A., Johnson, D. W., Schimel, D. 
S., Verburg, P. S., Wallace, L. L., & Luo, Y. (2008). Lagged effects 
of experimental warming and doubled precipitation on annual 
and seasonal aboveground biomass production in a tallgrass 
prairie. Global Change Biology, 14(12), 2923–2936. https://doi.
org/10.1111/j.1365-2486.2008.01703.x

Siepielski, A. M., Morrissey, M. B., Buoro, M., Carlson, S. M., Caruso, C. 
M., Clegg, S. M., Coulson, T., DiBattista, J., Gotanda, K. M., Francis, 
C. D., Hereford, J., Kingsolver, J. G., Augustine, K. E., Kruuk, L. E. 
B., Martin, R. A., Sheldon, B. C., Sletvold, N., Svensson, E. I., Wade, 
M. J., & MacColl, A. D. C. (2017). Precipitation drives global varia-
tion in natural selection. Science, 962(March), 959–962. https://doi.
org/10.1126/scien​ce.aag2773.

Stahl, K., Moore, R. D., & McKendry, I. G. (2006). Climatology of winter 
cold spells in relation to mountain pine beetle mortality in British 
Columbia, Canada. Handbook of Environmental Chemistry, Volume 5: 
Water Pollution, 32(1), 13–23. https://doi.org/10.3354/cr032013.

Sutherland, W. J., Freckleton, R. P., Godfray, H. C. J., Beissinger, S. R., 
Benton, T., Cameron, D. D., Carmel, Y., Coomes, D. A., Coulson, T., 
Emmerson, M. C., Hails, R. S., Hays, G. C., Hodgson, D. J., Hutchings, 
M. J., Johnson, D., Jones, J. P. G., Keeling, M. J., Kokko, H., Kunin, 
W. E., … Wiegand, T. (2013). Identification of 100 fundamental 
ecological questions. Journal of Ecology, 101(1), 58–67. https://doi.
org/10.1111/1365-2745.12025

Teller, B. J., Adler, P. B., Edwards, C. B., Hooker, G., & Ellner, S. P. 
(2016). Linking demography with drivers: Climate and competi-
tion. Methods in Ecology and Evolution, 7(2), 171–183. https://doi.
org/10.1111/2041-210X.12486

https://doi.org/10.1002/j.1537-2197.1991.tb14504.x
https://doi.org/10.1177/0002716295541001010
https://doi.org/10.1177/0002716295541001010
https://doi.org/10.1073/pnas.0802891105
https://doi.org/10.1007/978-3-642-18970-8
https://doi.org/10.1007/978-3-642-18970-8
https://doi.org/10.1111/gcb.12926
https://doi.org/10.1111/gcb.12926
https://doi.org/10.1086/706187
https://doi.org/10.1093/treephys/18.1.11
https://doi.org/10.1890/03-4029
https://doi.org/10.1890/03-4029
https://doi.org/10.1111/ecog.00839
https://doi.org/10.1890/07-1550.1
https://doi.org/10.6073/pasta/4d71c09b242602114fb684c843e9d6ac
https://doi.org/10.6073/pasta/4d71c09b242602114fb684c843e9d6ac
https://doi.org/10.1073/pnas.1918363117
https://doi.org/10.1111/ele.12399
https://doi.org/10.1890/13-2309.1
https://doi.org/10.1111/nph.15565
https://doi.org/10.1111/nph.15565
https://doi.org/10.1093/aob/mcz051
https://doi.org/10.1111/j.1466-8238.2011.00663.x
https://doi.org/10.1111/j.1466-8238.2011.00663.x
https://doi.org/10.1111/gcb.13990
http://prism.oregonstate.edu
http://prism.oregonstate.edu
https://www.r-project.org/
https://doi.org/10.1111/1365-2745.12334
https://doi.org/10.1098/rstb.2012.0074
https://doi.org/10.1098/rstb.2012.0074
https://doi.org/10.1111/j.1365-2486.2009.02122.x
https://doi.org/10.1111/j.1365-2486.2009.02122.x
https://doi.org/10.1111/j.1365-2486.2008.01703.x
https://doi.org/10.1111/j.1365-2486.2008.01703.x
https://doi.org/10.1126/science.aag2773
https://doi.org/10.1126/science.aag2773
https://doi.org/10.3354/cr032013
https://doi.org/10.1111/1365-2745.12025
https://doi.org/10.1111/1365-2745.12025
https://doi.org/10.1111/2041-210X.12486
https://doi.org/10.1111/2041-210X.12486


    |  1941EVERS et al.

Tenhumberg, B., Crone, E. E., Ramula, S., & Tyre, A. J. (2018). Time-lagged 
effects of weather on plant demography: drought and Astragalus 
scaphoides. Ecology, 99(4), 915–925. https://doi.org/10.1002/ecy.2163

Thompson, P. M., & Ollason, J. C. (2001). Lagged effects of ocean cli-
mate change on fulmar population dynamics. Nature, 413(6854), 
417–420. https://doi.org/10.1038/35096558

Tredennick, A. T., Hooten, M. B., & Adler, P. B. (2017). Do we need demo-
graphic data to forecast plant population dynamics? Methods in Ecology 
and Evolution, 8(5), 541–551. https://doi.org/10.1111/​2041-210X.12686

Urban, M. C. (2015). Accelerating extinction risk from climate change. Science, 
348(6234), 571–573. https://doi.org/10.1126/scien​ce.aaa4984

Urban, M. C., Bocedi, G., Hendry, A. P., Mihoub, J.-B., Peer, G., Singer, A., 
Bridle, J. R., Crozier, L. G., De Meester, L., Godsoe, W., Gonzalez, A., 
Hellmann, J. J., Holt, R. D., Huth, A., Johst, K., Krug, C. B., Leadley, P. 
W., Palmer, S. C. F., Pantel, J. H., … Travis, J. M. J. (2016). Improving 
the forecast for biodiversity under climate change. Science, 
353(6304), https://doi.org/10.1126/scien​ce.aad8466

van de Pol, M., Bailey, L. D., McLean, N., Rijsdijk, L., Lawson, C. R., & 
Brouwer, L. (2016). Identifying the best climatic predictors in ecol-
ogy and evolution. Methods in Ecology and Evolution, 7(10), 1246–
1257. https://doi.org/10.1111/2041-210X.12590

van de Pol, M., & Cockburn, A. (2011). Identifying the critical climatic 
time window that affects trait expression. American Naturalist, 
177(5), 698–707. https://doi.org/10.1086/659101

Waring, R. H., & Franklin, J. F. (1979). Evergreen coniferous forests of 
the Pacific Northwest. Science, 204(4400), 1380–1386. https://doi.
org/10.1126/scien​ce.204.4400.1380

Wenger, S. J., & Olden, J. D. (2012). Assessing transferability of eco-
logical models: An underappreciated aspect of statistical valida-
tion. Methods in Ecology and Evolution, 3(2), 260–267. http://doi.
org/10.1111/j.2041-210x.2011.00170.x

Wipf, S., Stoeckli, V., & Bebi, P. (2009). Winter climate change in alpine 
tundra: Plant responses to changes in snow depth and snowmelt 
timing. Climatic Change, 94(1–2), 105–121. https://doi.org/10.1007/
s1058​4-009-9546-x

World Meteorological Organization. (2017). WMO Guidelines on the 
Calculation of Climate Normals. https://libra​ry.wmo.int/doc_num.
php?expln​um_id=4166

Wright, I. J., Reich, P. B., Atkin, O. K., Lusk, C. H., Tjoelker, M. G., & 
Westoby, M. (2006). Irradiance, temperature and rainfall influence 
leaf dark respiration in woody plants: Evidence from comparisons 
across 20 sites. New Phytologist, 169(2), 309–319. https://doi.
org/10.1111/j.1469-8137.2005.01590.x

Yu, K., D'Odorico, P., Collins, S. L., Carr, D., Porporato, A., Anderegg, 
W. R. L., Gilhooly III, W. P., Wang, L., Bhattachan, A., Bartlett, M., 
Hartzell, S., Yin, J., He, Y., Li, W., Tatlhego, M., Fuentes, J. D., & 
Fuentes, J. D. (2019). The competitive advantage of a constitutive 
CAM species over a C4 grass species under drought and CO2 en-
richment. Ecosphere, 10(5), https://doi.org/10.1002/ecs2.​2721

Zurell, D., Thuiller, W., Pagel, J., Cabral, J. S., Münkemüller, T., Gravel, 
D., Dullinger, S., Normand, S., Schiffers, K. H., Moore, K. A., & 
Zimmermann, N. E. (2016). Benchmarking novel approaches for 
modelling species range dynamics. Global Change Biology, 22(8), 
2651–2664. https://doi.org/10.1111/gcb.13251

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Evers SM, Knight TM, Inouye DW,  
et al. Lagged and dormant season climate better predict plant 
vital rates than climate during the growing season. Glob Change 
Biol. 2021;27:1927–1941. https://doi.org/10.1111/gcb.15519

https://doi.org/10.1002/ecy.2163
https://doi.org/10.1038/35096558
https://doi.org/10.1111/2041-210X.12686
https://doi.org/10.1126/science.aaa4984
https://doi.org/10.1126/science.aad8466
https://doi.org/10.1111/2041-210X.12590
https://doi.org/10.1086/659101
https://doi.org/10.1126/science.204.4400.1380
https://doi.org/10.1126/science.204.4400.1380
http://doi.org/10.1111/j.2041-210x.2011.00170.x
http://doi.org/10.1111/j.2041-210x.2011.00170.x
https://doi.org/10.1007/s10584-009-9546-x
https://doi.org/10.1007/s10584-009-9546-x
https://library.wmo.int/doc_num.php?explnum_id=4166
https://library.wmo.int/doc_num.php?explnum_id=4166
https://doi.org/10.1111/j.1469-8137.2005.01590.x
https://doi.org/10.1111/j.1469-8137.2005.01590.x
https://doi.org/10.1002/ecs2.2721
https://doi.org/10.1111/gcb.13251
https://doi.org/10.1111/gcb.15519

