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Abstract
1. Population dynamics play a central role in the historical and current development 

of fundamental and applied ecological science. The nascent culture of open data 
promises to increase the value of population dynamics studies to the field of ecol-
ogy. However, synthesis of population data is constrained by the difficulty in iden-
tifying relevant datasets, by the heterogeneity of available data and by access to 
raw (as opposed to aggregated or derived) observations.

2. To obviate these issues, we built a relational database, popler, and its R client, 
the library "popler". popler accommodates the vast majority of population data 
under a common structure, and without the need for aggregating raw observa-
tions. The "popler" R library is designed for users unfamiliar with the structure of 
the database and with the SQL language. This R library allows users to identify, 
download, explore and cite datasets salient to their needs.

3. We implemented popler as a PostgreSQL instance, where we stored popula-
tion data originated by the United States Long Term Ecological Research (LTER) 
Network. Our focus on the US LTER data aims to leverage the potential of this 
vast open data resource. The database currently contains 305 datasets from 25 
LTER sites. popler is designed to accommodate automatic updates of existing 
datasets, and to accommodate additional datasets from LTER as well as non‐LTER 
studies.

4. The combination of the online database and the R library "popler" is a resource for 
data synthesis efforts in population ecology. The common structure of popler 
simplifies comparative analyses, and the availability of raw data confers flexibility 
in data analysis. The "popler" R library maximizes these opportunities by providing 
a user‐friendly interface to the online database.
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1  | INTRODUC TION

Population dynamics, changes in the abundance and composition 
of species through time and space, are central to ecology for both 
applied and fundamental reasons. Populations are the building 
blocks of ecological dynamics at higher scales of organization, and 
examples abound showing how the study of population ecology im-
proves understanding in evolution (Metcalf & Pavard, 2007), com-
munity ecology (Levine & HilleRisLambers, 2009) and ecosystem 
ecology (Fisher et al., 2018; Medvigy, Wofsy, Munger, Hollinger, & 
Moorcroft, 2009). Given their central role, studies of population dy-
namics will be an essential component in the advances allowed by 
the flourishing culture of open access and data synthesis.

The increase in freely available data is poised to change ecolog-
ical science (Laurance, Achard, Peedell, & Schmitt, 2016). The rising 
focus on open data is clear in changing publishing standards, in the 
design of observational networks (Schimel, Hargrove, Hoffman, & 
MacMahon, 2007) and in the availability of previously proprietary 
data (Bechtold and Patterson, 2005; Kratz, Deegan, Harmon, & 
Lauenroth, 2003). This deluge of open data holds promise to facil-
itate comparative analyses and to test the generality of ecological 
hypotheses. For population dynamics in particular, it is the increas-
ing availability of long‐term data that will likely yield the most sub-
stantial scientific advances, as long time series are required to detect 
trends in abundance (Lindenmayer et al., 2012), quantify temporal 
variance (Compagnoni et al., 2016), and identify endogenous (Knape 
& de Valpine, 2012) or exogenous (Hampton et al., 2013) drivers of 
population fluctuations.

There are currently three public databases that provide time se-
ries of population data. These are the Global Population Dynamics 
Database (GPDD; Inchausti & Halley, 2001), the Living Planet Index 
(Loh et al., 2005), and BioTIME (Dornelas et al., 2018). These data-
bases are an important resource for population biologists (e.g. Knape 
& de Valpine, 2012), but their characteristics make them optimal for 
a specific set of analyses. For example, the GPDD could limit the 
flexibility and power of statistical analyses, because its time series 
contain only one observation of population size per temporal repli-
cate. Moreover, when comparing the LPI with BioTIME, data indicate 
worldwide biodiversity declines while BioTIME data indicate stable 
biodiversity due to higher species turnover. This is likely due to the 
focus of the LPI on species of conservation concern (Dornelas et 
al., 2019). The fact that BioTIME contains assemblage (i.e. multispe-
cies) datasets might provide an advantage in assessing biodiversity 
trends. Finally, none of these three databases provides much exper-
imental data.

One of the best sources of publicly available long‐term data is 
the Long‐Term Ecological Research (LTER) network. The LTER was 
founded in 1980 and grew from the original 6 sites to, as of 2016, 28 
sites throughout North America, Puerto Rico, French Polynesia and 
Antarctica. Synthetic and comparative studies from the LTER net-
work have made valuable contributions to ecological understanding 
(Knapp et al., 2012). However, the majority of LTER synthesis re-
search has focused on ecological dynamics at the community (e.g. 

Wilcox et al., 2017) and ecosystem (e.g. Knapp & Smith, 2001) scales. 
Nevertheless, every LTER site collects population abundance data 
as one of its five core areas of continuous observations (Callahan, 
1984). In our opinion these data, which have been accumulating 
since 1980, are under‐used.

Long‐term ecological research population data provides two 
distinct advantages compared to existing databases. First, both as-
semblage and single‐species LTER dataset should be a resource in 
quantifying biodiversity. Assemblage datasets are expected to be an 
unbiased reflection of biodiversity trends (Dornelas et al., 2019), and 
LTER single‐species studies are generally not focused on species of 
conservation concern. Second, many of the analyses on LTER exper-
iments were published a few years after the start of manipulations. 
Hence, analysis of updated data from these LTER experiments could 
provide novel scientific insights.

One issue that may limit the use of LTER population data in syn-
thetic, comparative studies is their heterogeneity. The structure of 
LTER datasets may be widely different, employing a variety of data 
types (counts of individuals, biomass estimates, percent cover, etc.), 
experimental designs driven by the priorities of particular PIs, and 
diverse replication schemes—idiosyncrasies that may be difficult to 
accommodate in a one‐size‐fits‐all database. However, these chal-
lenges also present valuable opportunities. For example, the hier-
archical replication structure of many LTER studies (e.g. subplots 
within plots within transects) can facilitate more sophisticated sta-
tistical investigation than would be possible with simpler, aggregated 
or unreplicated data.

To overcome the issues posed by heterogeneous data struc-
tures, we developed popler (POPulation dynamics in Long‐term 
Ecological Research), an online database of LTER population studies. 
This database defines a common data structure that can accommo-
date in principle all population data, and its SQL environment allows 
updates whenever new data becomes available. We also developed 
a companion r package to facilitate the identification, access, and 
manipulation of raw and heterogeneous population data. Our goals 
here are to provide introductions to the database and package. We 
focus on LTER time series, but expanding popler beyond the LTER 
network is a priority for future development.

2  | THE POPLER  DATABA SE

To combine population data from the LTER network using a com-
mon structure, we identified a set of relevant variables (Table 1) and 
organized them into a relational database. We present the structure 
of the database in Figure 1, and we provide a simplified entity rela-
tionship diagram (ERD) in the supplementary material (Figure S1). In 
popler, we stored ‘raw’ data, meaning that we have not modified, 
edited or aggregated the original observations.

For inclusion in popler, we only considered studies that in-
cluded (a) repeated observations of populations or individuals 
through time, (b) at least five population censuses (as of database 
creation in 2017), and (c) taxonomic information associated with 
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abundance observations (e.g. we excluded time series of func-
tional groups). We provide technical details of database creation in 
Appendix S1.

The popler database currently contains data from 305 studies 
(122 of which are experimental) representing 4,377 cumulative years 
of observations. On average, studies in popler contain 10.5 years 

Variable Description

abundance _ observation Measure of population abundance at a specific time and loca-
tion. This variable measures abundance as a count, biomass, 
density or cover. For individual datasets, this variable is 
always equal to 1, because each attribute or set of attributes 
refer to a single individual

day Day of observation

month Month of observation

year Year of observation

spatial _ replicate _ n The nth level of spatial replication, where spatial 
_ replicate _ 1 is the study site. popler accommodates 
up to five levels of spatial replication

treatment _ type _ n For datasets originating from an experimental study, the nth 
treatment popler accommodates up to three treatments

covariates Ancillary observations that do not fall into the standard 
schema of popler

structure _ type _ n For individual data, these variables measure the nth attribute 
of individuals (identity, size, sex, status, stage). popler ac-
commodates up to four structure types per dataset

TA B L E  1   Variables used to store 
population or individual data in popler

F I G U R E  1   Schematic representation of the entity relationship diagram of the popler database. popler provides metadata on the 
studies that originated abundance data points (d). This metadata contains information on the unique identifiers of each study, on its design 
(observational or experimental), temporal, and spatial replication. popler stores the latitude and longitude of the study site (c). Each 
abundance data point corresponds to a specific taxonomic unit (b). Finally, the time series of population data collected in a study can be of 
four different types (count, density, biomass and cover), or they may be individual data with attributes such as size or sex (a)
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of data (median: 7), with the longest study containing 67. The sam-
pling designs are predominantly yearly (49%) and sub‐yearly (44%), 
and only 6% of designs sampled populations irregularly or less often 
than yearly. popler also contains abundant spatial replication, with 
studies containing a mean of 295 (median: 72) unique spatial repli-
cates distributed across an average of 2.4 (median: 2) nested spatial 
replication levels. Finally, popler contains data from 665 plant spe-
cies, 382 animal species and 1 fungal species.

2.1 | Population data

We define ‘population data’ as time series of observations on the 
size or density of a population of a species or other taxonomic unit. 
Observations of population size are stored in a variable called abun-
dance _ observation and can be measured as a count, biomass, 
density or cover. These four types of population data are stored in 
the namesake tables of the database (Figure 1a).

The population datasets contained in popler are always repli-
cated temporally. Temporal replicates are identified with up to three 
variables: year, month and day. Population data are also almost 
always spatially replicated, and spatial replicates are often nested. 
For example a study might include separate sites, each of which con-
tains intermediate spatial replicates (e.g. a transect, a block), which in 
turn contain the smallest spatial replicate at which observations are 
made (e.g. a plot, a quadrat). The hypothetical study described above 
would have three nested levels of spatial replication, identified by 
three numbered spatial _ replication variables. In popler, 
we accommodate datasets with up to five spatial replication lev-
els (Table 1). We call the first and therefore largest spatial replicate 
‘study site’ (Figure 1c). Note that this does not refer to the LTER site, 
one of the 28 NSF‐supported locations (Table S3).

popler contains both observational and experimental stud-
ies. Experimental datasets contain information on one or more ex-
perimental treatments. popler accommodates information on up 
to three experimental treatments, identified by three numbered 
treatment _ type variables (Table 1).

Most datasets also contain one or more variables in addition 
to the ones described above which we store in a character vari-
able called covariates (Table 1). These are variables that do not 
conform to our data model. covariates stores in each row, the 
content of an arbitrary number of such non‐conforming variables. 
covariates can be useful, for example, for time series that contain 
information on population structure. In these datasets, observations 
on population size are grouped based on subdivisions of the entire 
population, such as males and females, large and small individuals, 
etc. We identify these datasets through a variable in the metadata 
table called structured _ data (Table S2).

Finally, in addition to time series of abundance, popler contains 
individual‐level data. This data provides information on the attri-
butes of the individuals, or a subset thereof, that make up a pop-
ulation. We store this information in a dedicated table (‘Individual’, 
Figure 1a). As individual attributes, we consider variables that de-
scribe identity, size, sex, life stage or status (e.g. reproductive or 

non‐reproductive). We refer to these individual attributes with the 
term ‘structure’: popler accommodates datasets that measure up 
to four types of structure simultaneously. We store these data in up 
to four numbered structure _ type variables. While these data 
are not population time series, we chose to include them in popler 
because they provide information on demographic transitions that 
can be used to derive estimates of population growth. Moreover, 
in the cases of datasets that sample all of the individuals in a popu-
lation, individuals can be aggregated (i.e. summed) as a measure of 
population size.

2.2 | Taxonomic information

Each observation not only corresponds to a taxonomic unit 
(Figure 1b), typically a species or a genus, but also includes data that 
refer to a higher taxonomic rank, such as family or order. popler 
provides 15 taxonomic ranks, and 2 additional variables that refer to 
how taxonomic information is recorded in the original datasets. The 
additional variables are sppcode, which are taxon‐specific alphanu-
meric codes, and common _ name, the common name of each taxo-
nomic unit (Table S1). popler also can store accepted taxonomic 
information in an additional table (Figure 1b). This table accounts for 
ambiguities contained in the raw taxonomic data, which originate by 
the dynamic changes in species classifications (Chamberlain & Szöcs, 
2013). Further versions of popler will populate this second table with 
the accepted taxonomic units (which include taxonomic informa-
tion above the level of genus) provided by the r package taxize 
(Chamberlain & Szöcs, 2013).

2.3 | Study site

We stored the locations of datasets by recording the latitude (lat _

study _ site) and longitude (lng _ study _ site) of study sites 
(Figure 1c). Storing this information in a separate table allows for 
explicit connections between independent datasets collected at the 
same locations within LTER sites.

2.4 | Metadata

The metadata table (Table S2) provides information on temporal and 
spatial replication, and study design (Figure 1d), including title, link 
to online metadata, contact information for data originators and the 
type of data provided by the dataset (i.e. which of the five tables 
in Figure 1a the data is stored in). All remaining metadata is related 
to the variables stored in the tables 1a and 1b. First, some popula-
tion datasets subdivide the population in groups that share the same 
characteristic (e.g. sex, developmental stage, age). These datasets, 
however, are not individual data (Figure 1d): we flag them through 
the variable structured _ data. Second, we provide the years 
elapsed between the first and last observation (duration _ years), 
and the sampling frequency (samplefreq). Third, we provide the 
number of levels of nested spatial replicates, and the number of 
replicates for each spatially nested level. Fourth, we show whether 
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studies focus on a single species or on multiple species through the 
community variable. Fifth, we identify studies as observational or 
experimental (studytype). If a study is experimental, we provide in-
formation on the type of treatments imposed by the study (treat-
ment _ type _ n) and, when available, which one is the control 
treatment (control _ group). Finally, we report information on the 
data stored in the abundance _ observation variable: its units 
of measure (samplingunits), the area over which this abundance 
data was observed (spatial _ replication _ level _ n _ ex-

tent and spatial _ replication _ level _ n _ extent _

units), and in case the data was aggregated across space or time, 
we flag these data as derived (derived).

3  | THE POPLER  PACK AGE

The popler r package consists of three core functions that allow 
users to browse and retrieve data from the database (Figure 2). In 
order of intended use, these functions are: pplr _ dictionary(), 
pplr _ browse() and pplr _ getdata().

3.1 | The pplr _ dictionary() function

The dictionary function is a good place for new users to begin 
working with popler (Figure 2). With no arguments provided, this 
function returns a subset of the most useful metadata variables asso-
ciated with each dataset (Figure 1). Providing argument full _ tbl 

= TRUE returns all 77 metadata variables. Each one of these variable 
names can be provided as an argument to pplr _ dictionary(), 

which then returns the possible unique values of the variable. For 
example, pplr _ dictionary(lterid) returns the three letter 
codes of the LTER network sites included in popler. For numeric 
variables such as duration _ years, pplr _ dictionary() re-
turns a summary including quantiles, mean, and median.

3.2 | The pplr _ browse() function

Once the user is familiar with the meaning and content of the varia-
bles that define popler datasets, they are ready to dig deeper using 
pplr _ browse() (Figure 2). Running pplr _ browse() without 
arguments provides the metadata from the entire contents of the 
database. This will be a 305 by 20 data frame, with each row cor-
responding to a study and each column corresponding to a variable 
defined by pplr _ dictionary().

The full strength of pplr _ browse() is achieved by subsetting 
studies according to desired criteria using logical expressions. For 
example, the user might want to consider only studies whose dura-
tion is 30 years or greater, which can be subsetted with:

This operation will create the object LTER _ 30, which provides 
metadata for the datasets that satisfy the specified criterion. Multiple 
criteria may be combined. For example, 30+ year studies of plants can 
be browsed with

F I G U R E  2   Suggested workflow when using the popler r package to interface with the popler online database. The function  
pplr _ dictionary() refers to the variables of the metadata that describe the datasets contained in popler. pplr _ dictionary() 
describes these variables and returns their possible values. This information advises which criteria to use when subsetting popler. The user 
can provide a criterion (that is, a logical statement) to browse the metadata, using pplr _ browse(), or to download data using  
pplr _ get _ data(). Moreover, the output of pplr _ get _ data() (a data frame) can be the argument of three ancillary functions: 
pplr _ metadata _ url() opens the webpage containing the original dataset and their associated online metadata. pplr _ cov _ unpack()  
can be used to format the covariates contained in a raw data object into separate columns of a data frame. Finally, pplr _ citation() 
provides a citation for the downloaded dataset(s)
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To facilitate data exploration, pplr _ browse() output can be 
printed in a more readable setting by providing report = TRUE 
as an argument, which opens up a formatted html document. The 
metadata provided by pplr _ browse() not only contains informa-
tion on the characteristics of a study but also information on how to 
cite the study, unique identifiers such as its digital object identifier 
(DOI), and the contact information of study PIs.

3.3 | The pplr _ get _ data() function

Once datasets of interest have been identified, pplr _ get _

data() downloads the data from a server that hosts the database. 
This function can take as its first argument a browse object, a 
logical expression, or both. The data downloaded from popler 
are in ‘long’ form, meaning that each row of data reports a single 
measure of population size, and separate variables indicate the 
temporal and spatial replicate, taxa, etc. This format makes it easy 
to further subset downloaded datasets with the aim of visualiza-
tion and analysis.

3.4 | Ancillary functions

popler also provides three additional functions to open the url 
of the original dataset, unpack covariates and provide a citation 
for each dataset. First, the function pplr _ metadata _ url() 
launches the online study description in a web browser. Second, 
the pplr _ cov _ unpack() function transforms the covariates 
variable into a data frame (which pplr _ get _ data() does not 
provide by default). Third, pplr _ citation() generates a citation 
for the originators or each dataset.

4  | LIMITATIONS AND OPPORTUNITIES 
FOR DE VELOPMENT

Working with raw, spatially replicated and non‐aggregated data 
provides key advantages in quantitative analyses of population 
dynamics which were a driving force behind the development  
of popler. However, users need to examine individual data-
sets and the associated online study descriptions to understand 
their peculiarities. Single datasets have unique idiosyncrasies 
that  require vetting. For example, many datasets have gaps or 
changes in the sampling design during the length of the study, 
or the covariates variable can hold key information. Hence,  
we urge authors to consult the online documentation of the 
 original datasets.

In the future, there are opportunities to increase the size of 
popler and expand its scope. First, because many of the studies 
included in popler are ongoing, there will be opportunities to run 
regular updates aimed at including new observations in popler. 
Second, because our schema (Figure 1) is very general, the data-
base could be expanded to include population datasets outside 
of the LTER network. Third, it would be valuable to explicitly 

associate popler's population‐level data with environmental 
drivers, especially climate. Thus, it is our intention and hope that 
the resources provided by popler will advance ecological under-
standing of population dynamics within the LTER network, and 
more generally.
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