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abstract: Heritable symbioses are widespread and ecologically im-
portant. Many host organisms have complex life cycles that include
diverse opportunities for symbionts to affect their host and be lost dur-
ing development. Yet, existing theory takes a simplified view of host de-
mography. Here, we generalize symbiosis theory to understand how
demographic “storage” in the form of dormant or prereproductive life
stages can modify symbiosis dynamics. Using grass-endophyte sym-
bioses as context, we developed models to contrast the role of the seed
bank (a storage stage) against the reproductive stage in symbiont per-
sistence and prevalence. We find that the seed bank is as important as
or more important than the reproductive stage in driving symbiont
dynamics, as long as passage through the seed bank is obligate. Flex-
ible entry to the seed bank substantially weakens its influence on sym-
biont persistence but can modify prevalence in counterintuitive ways.
Our models identify a role for legacy effects, where hosts that lose
symbionts retain their demographic influence. The retention of bene-
fits via legacy effects can reduce symbiont prevalence and even cause
prevalence to decline with increasing benefits to hosts because symbiont-
free hosts carry those benefits. Our results resolve connections between
individual-level host-symbiont interactions and population-level pat-
terns, providing guidance for empirical studies.

Keywords: host-symbiont dynamics, demographic modeling, stage-
structured populations, mutualism, Epichloë, fungal endophyte.

Introduction

Most multicellular organisms harbor symbiotic microbes
that can have important effects on host fitness and popula-
tion dynamics (Yule et al. 2013; Oliver et al. 2014) and the
communities and ecosystems in which they reside (Knowl-
ton and Rohwer 2003; Rudgers and Clay 2007; Jaenike and
Brekke 2011). Vertical transmission is a key feature of many
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ecologically important symbioses, including interactions
between heritable bacteria and arthropods (Engelstädter
and Hurst 2009; Feldhaar 2011), zooxanthellae and corals
(Baird et al. 2009), chemosynthetic microbes and deep-sea
animals (Dubilier et al. 2008), bacterial symbionts and sponges
(Schmitt et al. 2012), fungal endophytes and grasses (Selosse
and Schardl 2007), and gut microbiota and vertebrates (Ley
et al. 2008). Given the ubiquity and significance of heritable
symbionts, understanding the dynamics of their interac-
tions with host organisms is an important area of inquiry.
Vertical transmission couples the fitness of the symbiont

to that of the host and is expected to favor the evolution of
host-symbiont mutualism due to positive fitness feedbacks
(Ewald 1987; Sachs et al. 2004). Heritable symbionts that
are beneficial are therefore expected to become fixed in host
populations, whereas parasitic symbionts may be eliminated
if opportunities for horizontal transfer are rare or absent
(e.g., Clay 1993). Despite these expectations, intermediate
prevalence of heritable symbionts in host populations (mix-
ture of symbiotic and symbiont-free hosts) is more the rule
than the exception (Schulthess and Faeth 1998; Hilgen-
boecker et al. 2008; Oliver et al. 2008; Erickson et al. 2012;
Gibert and Hazard 2013; Miller and Rudgers 2014; Sem-
martin et al. 2015). Theoretical models have shown that im-
perfect vertical transmission, where some offspring of sym-
biotic parents fail to inherit the symbiont, can promote
intermediate prevalence, even when symbionts confer ben-
efits to their host (Turelli 1994; Ravel et al. 1997; Gundel
et al. 2008; Hancock et al. 2011). Empirical evidence from a
diversity of microbial symbioses indicates that imperfect ver-
tical transmission is widespread (Darby and Douglas 2003;
Narita et al. 2007; Afkhami and Rudgers 2008; Oliver et al.
2014; Gibert et al. 2015).
While theoretical and empirical work has emphasized the

importance of vertical transmission (Gundel et al. 2011),
other transitions in the host life cycle provide additional op-
portunities for symbiont loss. Host demographic “storage”
in the form of dormant or prereproductive stages could lead
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Host-Symbiont Population Dynamics 447
to loss of the symbiont prior to host reproduction. We refer
to the loss of symbionts during somatic development across
life-history stages of an individual as “imperfect retention.”
For example, arthropod hosts of heritable bacteria have
complex life cycles that may include long-term egg dor-
mancy and demographic transitions through prereproduc-
tive metamorphic stages; it is well documented that these
hosts can lose inherited symbionts during prereproductive
transitions (e.g., Darby and Douglas 2003; Prado et al. 2006;
Geib et al. 2009). Similarly, in plant symbioses, sustained
seed dormancy and transitions from seeds to seedlings pro-
vide opportunities for symbiont loss prior to flowering (e.g.,
Afkhami and Rudgers 2008; Gibert et al. 2015). Despite
broad potential for imperfect retention of symbionts, most
symbiosis theory either assumes that imperfect transmission
from parent to offspring is the only pathway of symbiont
loss or does not distinguish between failed transmission and
failed retention (Ravel et al. 1997; Turelli 1994; Gundel et al.
2008; Hancock et al. 2011; Kwiatkowski andVorburger 2012).

Host life-history complexity provides not only additional
pathways of symbiont loss but also new pathways for sym-
biont effects on hosts. For example, effects of symbionts can
vary in magnitude and even direction between host life
stages (Rudgers et al. 2012; Yule et al. 2013; Chung et al.
2015; Gibert et al. 2015). No previous studies have consid-
ered whether interactions that occur during a storage stage
(imperfect retention and effects on prereproductive vital
rates) have similar or different consequences for symbiont
dynamics than interactions during a reproductive stage
(imperfect transmission and effects on host reproduction).
Consequently, it remains unknown whether existing theory
applies broadly to hosts with complex life histories. The
combination of imperfect retention and symbiont effects
on prereproductive vital rates sets the stage for legacy ef-
fects, where hosts that lose symbionts retain their demo-
graphic influence. The role of legacy effects in symbiosis
is not well understood, though there is growing awareness
that effects of past environments, including interactions with
other species, can be important for organisms with complex
life cycles (e.g., Thomas and Rudolf 2010; O’Connor et al.
2014).

Here, we develop general theory to understand how de-
mographic storage influences the ecological dynamics of
vertically transmitted symbionts. We employ the concept
of seed banking as an extreme form of storage, but this
theory applies generally to symbioses with any form of de-
mographic stage structure. To facilitate interpretation, we
ground our model in a particular ecological context: the
widespread symbiosis between cool-season grasses and ver-
tically transmitted fungal endophytes (Cheplick and Faeth
2009), an ecologically and economically important model
system of heritable symbiosis in which demographic stor-
age may play an important role.
This content downloaded from 128.0
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Epichloid fungi are systemic symbionts of at least 80 gen-
era of host grasses (Saikkonen et al. 2006). Fungal endo-
phytes can have beneficial effects on various aspects of plant
performance, including increased drought tolerance (Kan-
nadan and Rudgers 2008; Davitt et al. 2011) and herbivore
resistance (Müller and Krauss 2005; Rudgers and Clay 2007),
but negative effects are also commonly reported (e.g., Faeth
2009; Rudgers et al. 2012). Most epichloid endophytes are
predominantly or exclusively vertically transmitted, and im-
perfect vertical transmission is well documented (Afkhami
and Rudgers 2008; Gibert and Hazard 2013). Experiments
and large-scale surveys have sought to link endophyte oc-
currence and prevalence with their effects on host fitness
(Rudgers et al. 2009; Iannone et al. 2012; Miller and Rudgers
2014; Santangelo et al. 2015; Semmartin et al. 2015). Such
studies have revealed surprising patterns, including cases
in which endophytes harm their host but occur at high fre-
quency (e.g., Faeth and Sullivan 2003) and others in which
endophytes provide strong benefits but occur at low fre-
quency (e.g., Gibert and Hazard 2013). A theoretical frame-
work that accommodates life-history complexity may help
resolve connections between individual-level processes and
population-level patterns.
Like many plants, grass life cycles often include poten-

tially long-lived seed banks (Bakker et al. 1996), raising the
possibility of imperfect retention during demographic stor-
age. Indeed, it is well recognized that endophytes in seeds
lose viability at a faster rate than do the seeds themselves
(Rolston et al. 1986; Gundel et al. 2009). This observation
suggests that passage through a seed bank should reduce
endophyte prevalence and increase extinction risk. How-
ever, it may also be important to consider effects of endo-
phytes on seed vital rates. For example, positive, neutral,
and negative effects on seed survival and germination have
all been reported, and effects are often dependent on envi-
ronmental context (Clay 1987; Novas et al. 2003; Vila-Aiub
et al. 2005; Faeth and Hamilton 2006; Gundel et al. 2006a,
2006b, 2009, 2010).
Our goal was to evaluate whether and how the intro-

duction of a seed bank in the host life cycle modifies
host-symbiont population dynamics. We contrast the dy-
namics that result from failed symbiont retention and de-
mographic effects on seed vital rates against those that
result from failed vertical transmission and effects on re-
productive rates. We develop two variations on the theme
of host demographic storage: obligate storage, where every
seed must pass through a seed bank before recruiting as a
reproductive adult, and partial storage, where some seeds
recruit directly to the reproductive stage. We also include
the possibility of legacy effects in a seed whose endophyte
dies, which we show to be an important consideration. Our
models bracket realistic variation in host life cycle com-
plexity and therefore provide insight into when and how
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storage stages matter for host-symbiont interactions and
when and how they do not.
Model Development

Because we are interested in populations structured by both
demographic stage and symbiont status, matrix projection
models provide a natural fit. We consider a plant popula-
tion structured by two life stages (seeds in the seed bank
and reproductive plants) with endophyte-symbiotic (E1)
and nonsymbiotic (E2) states in each stage (fig. 1). Let
the vector nt represent the densities of E2 seeds, E2 plants,
E1 seeds, and E1 plants in year t. Change in population
size and composition is governed by a discrete-time transi-
tionmatrix (A) according to nt11 p Ant . All of our analyses
focus on two components of symbiont dynamics: whether
symbionts will persist in the long term (“persistence”) and,
if so, the frequency at which they will occur (“prevalence”).
For simple transition matrixes, eigenanalysis provides all of
the information necessary to infer persistence and preva-
lence (Caswell 2001; Gundel et al. 2008). For prevalence,
we focus on the fraction of plants in the reproductive stage
that are symbiotic, a more relevant quantity for field studies
than the E1 fraction of the total (reproductive plant1 seed
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bank) population. We assume that the environment is con-
stant, that abovegroundplants are semelparous, and that sym-
biont transmission is exclusively vertical such that transi-
tions from the E2 state to the E1 state have a probability
of 0 (fig. 1; in app. A we present analyses in which this as-
sumption is relaxed; apps. A–D available online). Themodel
also assumes density independence, although our results
hold for density-dependent environments (app. B).
Obligate Seed Dormancy

We begin with the assumption that seed banking is obligate.
All seeds enter the seed bank; if they survive, they recruit
into the reproductive stage the following year. Symbiont
loss may occur via imperfect transmission from maternal
plants to seeds or via imperfect retention from the seed
bank to reproductive plants (fig. 1). The transition matrix is

A p

0 f 2 0 f 1(12 t)
s2 0 s�(12 r) 0
0 0 0 f 1t
0 0 s1r 0

2664
3775: ð1Þ

Parameter f indicates per capita seed production by repro-
ductive plants, and s indicates the probability of seed sur-
vival in the seed bank. Both demographic processes may be
unique to E2 and E1 hosts, indicated with superscripts 2
and 1, respectively. The symbiont loss parameters are ver-
tical transmission rate t (probability that a seed from an
E1 plant is also E1) and retention rate r (probability that
a reproductive plant from an E1 seed is also E1).
We refer to E2 seeds arising from E1 seeds that lose

their symbiont as being converted. In defining the transi-
tion matrix, we are forced to consider whether legacy effects
of former symbionts could modify the survival of converted
seeds (represented by the effective survival rate s� in eq. [1]).
Depending on the mechanism by which symbionts influ-
ence their hosts during storage, converted hosts might retain
their E1 survival rate, assume the E2 survival rate, or ex-
hibit intermediate survival. We formulate the model to ac-
commodate all possibilities, defining effective survival of
converted seeds as a weighted average of E1 and E2 rates:

s� p as1 1 (12 a)s2: ð2Þ

In the analyses that follow, we consider two extremes that
bracket scenarios in nature: converted seeds perfectly retain
(a p 1) or completely lose (a p 0) the influence of their
former symbiont.
To reduce dimensionality of the model and simplify the

analysis, we define F and S as ratios of reproductive and seed
E- E+

Figure 1: Schematic of theoretical model for the influence of demo-
graphic storage on host-symbiont population dynamics. The model is
inspired by endophyte symbiosis in grasses with a seed bank. Hosts
are structured by demographic state (reproductive plant or seed in
bank) and endophyte state (E2 or E1). Figure represents the obligate
seed bank model for b p 1 and the partial seed bank model for 0 !

b ! 1. Symbology of demographic transitions (arrows) corresponds
to models (1) and (11). Illustration by Karina I. Helm.
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survival rates, respectively, of E1 to E2 hosts (F p f 1=f 2,
S p s1=s2). F and S values of 1 represent a perfectly neutral
symbiont, and values less than or greater than 1 represent
costs or benefits, respectively. Long-term symbiont persis-
tence requires that the E1 component of the population in-
creases at a rate that is greater than that of the E2 compo-
nent. We solved for the parameter relationships that satisfy
this condition and the long-run prevalence of symbionts as a
function of host demography and symbiont loss (app. C).

Symbiont Persistence. We found that symbiont persistence
requires

FS 1
1
tr

: ð3Þ

We can glean several biological insights from this result.
First, if symbionts are retained perfectly and have no effect
on seed survival (r p 1, S p 1), expression (3) reduces to
F 1 1=t, precisely the condition for symbiont persistence
in an annual, unstructured host: fertility benefits must ex-
ceed the inverse of the vertical transmission rate (Gundel
et al. 2008). This tells us that demographic complexity per se
does not modify symbiont persistence in host populations;
seed banks matter only when they provide new avenues
for symbiont loss or effects on hosts. Second, if symbionts
have no effect on seed survival (S p 1), the potential for im-
perfect retention (r ! 1) means that the existence of a seed
bank would only destabilize symbiont persistence, all else
equal. However, if symbionts enhance seed survival (S 1 1),
then a seed bankmay stabilize symbiont persistence but only
if S 1 1=r; that is, seed survival benefits must balance imper-
fect retention in the sameway that fertility benefits must bal-
ance imperfect transmission in models lacking seed banks.

Inequality (3) indicates that host-symbiont interactions
during dormant versus reproductive life stages are com-
pletely interchangeable. This is true for both the effects of
symbionts on host demography (product FS) and pathways
of symbionts loss (product tr). Obligate dormancy dictates
a linear progression through the life cycle, so it makes sense
that a fitness effect on one stage would have the same con-
sequence as the same effect on the other. The interchange-
ability of demographic effects also makes them compensa-
tory, as shown in F-S space (fig. 2). For example, a twofold
survival cost (S p 0:5) can be perfectly balanced by a two-
fold fertility benefit (F p 2). Transmission and retention
rates are similarly interchangeable, and the product tr can
modify the compensatory relationship between costs and
benefits (fig. 2). As tr decreases, stronger benefits in one vi-
tal rate would be needed to offset a given cost in the other
vital rate.

Finally, we can observe that parameter a does not appear
in inequality (3). Thismakes sense, since inequality (3) com-
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pares the production of E1 hosts by E1 hosts to production
of E2 hosts by E2 hosts; production of E2 hosts by E1
hosts contributes to neither (app. C). Thus, the fate of con-
verted hosts has no effect on symbiont persistence, but it does
affect prevalence, as we show next.

Symbiont Prevalence. The equilibrium fraction of plants
that are E1 is given by

cE1p
FSrt2 1

F 2 11 FSrt2 Frt2 a(FSrt2 FSt2 Frt 1 Ft)
if FS 1

1
tr

0 otherwise
:

(
ð4Þ

This equilibrium is derived from the stable population struc-
ture; the frequency of symbiosis reaches an equilibrium, but
the population continues to grow geometrically (app. C).
Given that persistence condition (3) is satisfied, we can first
notice that if symbionts are retained perfectly and have no
effect on seed survival (r p 1, S p 1), symbiont prevalence
reduces to (Ft2 1)=(F 2 1). As above, we recover the lim-
iting case of annual hosts that lack a storage stage (Gundel
et al. 2008). When symbionts are lost during seed storage,
prevalence is sensitive to the effective survival rate of con-
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Figure 2: Persistence conditions for obligate seed-banking model
(eq. [3]). Lines show isoclines that separate regions of endophyte
persistence (above) or extinction (below) for different levels of sym-
biont loss (tr, product of vertical transmission and seed bank reten-
tion rates). Axes represent the effects of symbionts on host fertility
(F p f 1=f 2) and seed survival (S p s1=s2), respectively. Gray lines
at F p 1 and S p 1 represent neutral effects.
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verted seeds, in contrast to the persistence condition. When
converted hosts lose symbiont effects (a p 0), the nonzero
prevalence in equation (4) becomes

cE1p
FStr2 1

F 2 11 FStr2 Ftr
, ð5Þ

and when converted hosts instead retain the E1 survival
rate as a legacy effect (a p 1), it becomes

cE1p
FStr2 1

F 2 11 FSt2 Ft
: ð6Þ

These expressions differ only in the presence of r in the de-
nominator, and they are equal when S p 1. As a conse-
quence, symbiont prevalence given by equation (5) is always
greater than that given by equation (6) as long as S 1 1 and
vice versa. This means that, all else equal, we should expect
lower population-level symbiont prevalence when converted
E2 hosts retain benefits of symbiosis than when converted
hosts lose these benefits. Conversely, if symbionts impose
costs on the storage stage (S ! 1), we should expect greater
prevalence when these costs are retained in converted hosts
than when they are lost. These outcomes occur because im-
perfect retention promotes recruitment of E2 hosts. This ef-
fect is amplified when converted E2 seeds carry survival
benefits of their former symbionts and dampenedwhen con-
verted E2 seeds carry survival costs.

The effective seed survival ratemodifies howhost-symbiont
interactions that occur during dormant versus reproductive
stages influence symbiont prevalence. First, increasing sym-
biont transmission (t) and retention (r) always leads to greater
prevalence, as expected (fig. 3A, 3B). When converted seeds
take on the E2 survival rate (a p 0), the two pathways of
symbiont loss influence endophyte prevalence in exactly the
same way (overlapping lines in fig. 3A), mirroring their in-
terchangeable effects on endophyte persistence (fig. 2).How-
ever, when converted seeds retain legacy effects (a p 1),
imperfect transmission and retention play different roles
(fig. 3B). For symbionts that are beneficial during storage
(S 1 1), losing symbionts via imperfect retention reduces
prevalence more strongly than losing symbionts via imper-
fect vertical transmission and vice versa for symbionts that
are costly during storage (S ! 1). As above, this asymmetry
arises because retention of fitness benefits or costs in con-
verted seeds promotes or reduces, respectively, recruitment
of E2 hosts into the reproductive stage.

Second, the effective survival of converted hosts modifies
the relative importance of host fertility in the reproductive
stage versus survival in the storage stage as determinants of
symbiont prevalence. Increasing benefits to either life stage
This content downloaded from 128.0
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increases prevalence (fig. 4A, 4B), as expected. Under most
conditions, beneficial effects on survival promote preva-
lence more strongly than beneficial effects on reproduction.
The asymmetry between reproduction and seed survival in
these cases can be derived by comparing endophyte preva-
lence in the limit as F or S becomes large. If converted seeds
lose the demographic effects of symbionts (a p 0), we find

lim
F→∞

cE1p
Str

Str2 tr1 1
, ð7Þ

lim
S→∞

cE1p 1: ð8Þ

Symbionts become fixed in the population as seed survival
benefits become large (eq. [8]), regardless of what happens
in the reproductive stage, while benefits to reproduction
cannot alone drive symbionts to fixation (eq. [7]). If con-
verted seeds maintain legacy effects (a p 1), we find

lim
F→∞

cE1p
Str

St2 t1 1
, ð9Þ

lim
S→∞

cE1p r: ð10Þ

As above, the role of the seed bank in symbiont prevalence
dominates the role of the reproductive stage: seed bank ef-
fects and loss continue to limit symbiont prevalence even
as fertility benefits become large (eq. [9]), while the reverse
is not true (eq. [10]). However, with legacy effects, even
strong seed survival benefits cannot fix symbionts in the
plant population because converted E2 seeds carry those
benefits and thus recruit into the population as E2 plants;
failed retention in the seed bank becomes the ultimate limit
on symbiont prevalence (eq. [10]). In all cases, the dominant
role of the seed bank reflects the facts that prevalence is
censused in reproductive plants and that the seed bank is ob-
ligate and upstream in the life cycle. Therefore, any benefits
to plant fertility must be filtered through the seed bank be-
fore they can affect prevalence.

Summary of Obligate Seed Dormancy. For a host life cycle
with obligate seed dormancy, the seed bank exerts an impor-
tant influence on symbiont persistent and prevalence—as
strong as or stronger than the reproductive stage. Obligate
storage allows for demographic compensation between stages,
where survival benefits in the seed bank may balance plant
fertility costs or vice versa. While increasing benefits to stor-
age and reproductive stages promotes symbiont prevalence,
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Figure 3: Equilibrium symbiont prevalence in relation to symbiont vertical transmission (t) and retention (r). A, C, E, Prevalence when
converted hosts lost symbiont effects (a p 0). B, D, F, Prevalence when converted hosts retain symbiont effects (a p 1). Rows correspond
to the obligate seed bank model (b p 1; A, B) and two levels of partial seed banking (b p 0:8, C, D; b p 0:3, E, F). In each panel, either
t (solid lines) or r (dashed lines) varies along the X-axis; the rate that is not varying is held at t or r p 1. Line shading represents effects
of symbionts on host fecundity (F) and survival (S), which may be positive (F or S p 2) or negative (F or S p 0:75) for either or both vital
rates. A and B show analytical results (eq. [4]), and C–F show results from numerical simulation. Overlap of multiple lines is represented by
single lines that change shading or type.
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Figure 4: Equilibrium symbiont prevalence in relation to effects of symbionts on host reproduction (F) and seed bank survival (S). In each
panel, either F (solid line) or S (dashed line) varies along the X-axis; the process that is not varying is held at F or S p 1:5. Line shading
represents symbiont loss through imperfect transmission only (t p 0:5, r p 1) or imperfect retention only (r p 0:5, t p 1). Row (varying
b) and column (varying a) layout as in figure 3. A and B show analytical results (eq. [4]), and C–F show results from numerical simulation.
Overlap of multiple lines is represented by single lines that change shading or type.
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seed survival limits prevalence more strongly because effects
on host reproductionmust be filtered through the seed bank.
Imperfect retention of symbionts in the seed bank has sim-
ilar effects on symbiont persistence and prevalence as im-
perfect transmission from plant to seeds. However, the two
pathways of symbiont loss can have different effects on prev-
alence depending on whether seeds that convert to the non-
symbiotic state retain legacy effects of their former symbionts.
Collectively, results indicate that patterns of symbiosis in re-
productive stages cannot be understood without consider-
ing processes that occur upstream in the host life cycle.
Partial Seed Dormancy

Thus far we have considered a host life cycle in which entry
into the storage stage is obligate. A common and more flex-
ible life-history strategy is one in which a fraction of off-
spring transitions to storage while the other fraction recruits
directly into the reproductive stage. For example, many plant
and arthropod hosts use partial seed or egg banking as a risk-
spreading strategy in unpredictable environments (Evans and
Dennehy 2005; Childs et al. 2010). Here we relax the as-
sumption of obligate dormancy to accommodate partial
propagule banking (fig. 1). The transition matrix for a par-
tial seed bank model is

A p

0 f 2b 0 f 1b(12 t)
s2 f 2(12 b) s�(12 r) f 1(12 b)(12 t)
0 0 0 f 1bt
0 0 s1r f 1(12 b)t

2664
3775:
ð11Þ

Parameter b represents the probability that a seed will enter
the seed bank, where it remains for 1 year, versus recruit di-
rectly as a reproductive plant (12 b). Note that b p 1 cor-
responds to the previous obligate seed bank model and b p
0 corresponds to an unstructured annual model where there
is no reproductive delay. We assume that the seed-banking
parameter is a species-level trait and does not differ with re-
spect to symbiont status. We also assume that the seed bank
is the only possibility for seed mortality, such that seeds that
bypass the seed bank recruit perfectly to the reproductive
stage (fig. 1). It may be realistic to include an additional
source of mortality not associated with the seed bank (e.g.,
predispersal seed predation), but, to minimize the number
of parameters, we proceed with the simplifying assumption.
All other parameters and assumptions are carried over from
model (1).

This model, while complicated by only one additional
parameter over the obligate model, is mathematically less
tractable; it has analytical solutions, but they do not lend
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themselves to interpretation. Therefore, we assessed symbi-
ont persistence and prevalence by numerical simulation
(we verified that simulation results match analytical pre-
dictions for b p 1). We assessed symbiont persistence and
prevalence after 1,000 years of simulated population dy-
namics, which was sufficient time to reach equilibria. We
imposed density dependence in our simulations to keep pop-
ulation sizes finite, for computational convenience. The ad-
dition of density dependence does not affect equilibrium
symbiont dynamics as long as E1 and E2 hosts are simi-
larly affected by density (app. B). We continue to focus on
the symbiont loss rates t and r and effect ratios F and S, al-
though we found that quantitative details of some results
were sensitive to the absolute values of fecundity and seed
survival (lower-level parameters f and s). We present these
details in appendix D and focus here on qualitative results
that are robust to variation in lower-level values. All source
code for our simulation work is deposited in the Dryad Dig-
ital Repository: http://dx.doi.org/10.5061/dryad.54rv6 (Bibian
et al. 2016).

Partial Seed Dormancy: Symbiont Persistence. We find that
flexible entry to the seed bank substantially weakens its in-
fluence on symbiont persistence. Because partial seed bank-
ing also changes the relative importance of imperfect trans-
mission versus retention, figure 5 separates the influence of t
(A, C, E) and r (B, D, F). As the fraction of seeds that enter
the seed bank decreases from b p 1, isoclines that separate
regions of symbiont extinction and persistence become ver-
tical (fig. 5, cf. rows), and isoclines for different levels of im-
perfect retention overlap (fig. 5B, 5D, 5F). These changes to
the isoclines indicate that effects on seed survival (S) and
symbiont death in the seed bank (r) have virtually no influ-
ence on symbiont persistence as the seed-banking probabil-
ity decreases. Instead, persistence is determined entirely by
the balance of symbiont effects on host fertility and loss
from imperfect vertical transmission. The value of b for
which seed banks no longer affect symbiont persistence is
dependent on lower-level parameter values, as described
in appendix D. However, under a wide range of parameter
values, the rate of seed banking must be very high (b ≥ 0:9)
to strongly affect symbiont persistence. Thus, unless seed
banking is obligate or nearly so, benefits to seed survival
cannot compensate for fertility costs, and, conversely, costs
to seed survival and failed retention in the seed bank cannot
threaten symbiont persistence. As in the obligate seed dor-
mancy model, the effective survival rate of converted seeds
has no influence on symbiont persistence in the host popu-
lation, since it does not affect the fitness contrast between
host types.

Partial Seed Dormancy: Symbiont Prevalence. Although
partial seed banking weakens the effect of host demographic
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Figure 5: Symbiont persistence conditions in relation to symbiont effects on host reproduction (F) and survival (S) for varying levels of host
seed banking: b p 1 (A, B), b p 0:8 (C, D), b p 0:3 (E, F). As in figure 2, lines separate regions of symbiont persistence and extinction, and
thin gray lines indicate neutral effects. Columns show variation in vertical transmission rate t (gray lines; A, C, E) and imperfect retention rate
r (black lines; B, D, F). Line types represent different levels of endophyte loss (t or r p 1, 0.75, 0.25).
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storage on symbiont persistence, symbiont prevalence can
remain sensitive to host-symbiont interactions that occur
during dormant versus reproductive stages and in some sur-
prising ways. As in the obligate seed bankmodel, population-
level prevalence depends on the effective survival rate of con-
verted seeds, as determined by parameter a.

Increasing vertical transmission (t) or seed bank reten-
tion (r) of symbionts promotes their prevalence in the host
population, as expected (fig. 3). As the probability of seed
banking decreases from b p 1, symbiont prevalence be-
comes less sensitive to imperfect retention than it is to imper-
fect transmission and can remain high even when retention
is very low (fig. 3C, 3D). When seed banking is infrequent
(b ≤ 0:3), prevalence is unaffected by imperfect retention
and instead completed determined by the reproductive stage
(fig. 3E, 3F). The effective survival rate of seeds in the seed
bank modified the consequences of imperfect retention in
a similar way as in the obligate storage model (fig. 3): a given
reduction in retention has a greater negative effect on prev-
alence when converted E2 seeds retain survival benefits
(S 1 1) than when they do not and a weaker negative effect
when converted seeds retain survival costs (S ! 1) than
when they do not. However, these effects are apparent only
at moderate to high seed-banking probabilities, while prev-
alence remains sensitive to symbiont loss in the seed bank.

The responsiveness of symbiont prevalence to variation
in demographic effects on host fertility (F) versus survival
(S) is shown in figure 4. The most important and surprising
result is that, under partial seed banking, increasing benefi-
cial effects of symbionts on host survival in storage can de-
crease symbiont prevalence in the host population. Whether
demographic benefits increase or decrease symbiont prev-
alence depends on the rate of seed banking and whether
converted E2 seeds lose or keep the influence of former
symbionts. When seed banking is very high, the dynamics
converge on those of the obligate storage model, and bene-
ficial effects on seed survival have strictly positive effects on
prevalence, regardless of legacy effects (fig. 4A, 4B). How-
ever, when seed banking is less frequent, benefits to seed sur-
vival decrease symbiont prevalence but only if benefits are
retained in converted E2 hosts (a p 1; fig. 4C, 4D). The
key to understanding negative effects of benefits on preva-
lence under partial seed banking is that these effects occur
when symbiont persistence is maintained entirely by fertility
benefits (i.e., the persistence isocline is vertical; fig. 5). If the
reproductive stage, alone, satisfies the persistence condition,
then symbiont effects on seed survival are free to take any
value; this allows for high symbiont prevalence despite costs
to a partial storage stage that could not be tolerated with an
obligate storage stage. Because symbiont persistence is in-
sensitive to seed survival costs under partial seed banking,
strong costs can eliminate converted E2 hosts that arise
via imperfect retention, thus promoting the relative abun-
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dance of E1 hosts (fig. 4D). As costs weaken and transition
to increasing benefits, converted E2 seeds recruit at a greater
rate, causing a decline in prevalence as S increases. As b
becomes small, the negative effect of benefits on prevalence
is diminished because opportunities for host conversion dur-
ing storage become infrequent (fig. 4E, 4F).

Summary of Partial Seed Dormancy. We find that flexible
entry into a storage stage of the host life cycle can substan-
tially weaken the role of demographic storage in symbiont
persistence and qualitatively alter how effects of symbionts
on their host translate to population-level prevalence. The
potential for demographic compensation between costs and
benefits to different host life stages, as seen in the case of
the obligate seed bank, disappears once passage through
those stages is not strictly sequential. The insensitivity of
symbiont persistence/extinction to seed bank processes al-
lows for costs to the storage stage that increase symbiont
prevalence, as long as imperfect retention generates E2
hosts that carry those costs via legacy effects. Thus, partial
seed banking may not importantly affect whether symbionts
can persist in host populations—this is dominated by inter-
actions during the reproductive stage—but it canmodify the
relationship between individual-level effects and population-
level prevalence in counterintuitive ways.
Discussion

Microbial symbionts are common and influential in nature.
Understanding their ecological dynamics takes on urgency
when considering their role in host responses to global
change (Correa and Baker 2011; Kivlin et al. 2013) and their
applications in pest and disease control (Zindel et al. 2011;
Hoffmann et al. 2015). Previous theory for symbiont dy-
namics has generated the intuitive expectations that greater
fitness benefits of heritable symbionts should promote their
persistence and prevalence in host populations and that
fitness costs are incompatible with host-symbiont mutual-
ism. These expectations have provided a lens through which
empirical patterns of symbiosis have been interpreted (Oli-
ver et al. 2008; Semmartin et al. 2015) and debated (Faeth
2009; Rudgers et al. 2010). Our work advances this conversa-
tion by resolving connections between individual-level inter-
actions (the effects of symbionts on hosts and pathways of
loss from host lineages) and patterns of symbiont occurrence
at the population level. We show that a simple but realistic
modification to host-symbiont theory—the introduction of
a “storage” stage of the host life cycle—can change expec-
tations for symbiont persistence and prevalence. Ours is
not the first model of heritable symbiosis to include host life
cycle complexity (Ravel et al. 1997; Hancock et al. 2011), but
we are the first, to our knowledge, to evaluate when and how
this complexity affects symbiont dynamics, which may aid
42.167.078 on October 07, 2016 11:37:50 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).



456 The American Naturalist
in comparative analyses across hosts with variable life his-
tories. Our work argues for careful consideration of pop-
ulation structure, including the fates of hosts that lose sym-
bionts during life cycle transitions, a poorly understood but
surprisingly consequential dimension of symbiosis dynam-
ics.We have analyzed ourmodel with inspiration from grass-
endophyte symbioses. Here we discuss the more general im-
plications of our results.

Our two model variants, obligate and partial seed bank-
ing, reveal when and how storage stages of the host life cycle
matter for symbiont dynamics and when and how they do
not. Storage stages critically affect symbiont dynamics when
passage through storage is obligate. In this case, symbiont
effects on and loss from the storage stage are as important
as or more important than these same processes in the re-
productive stage, and their interchangeability provides op-
portunity for compensation of costs in one stage by benefits
in the other. Thus, costs of symbiosis are compatible with
symbiont persistence and thus stable host-symbiont mutu-
alism as long as costs are balanced by benefits elsewhere in
the life cycle, revealing many ways in which symbionts may
act as mutualists (Rudgers et al. 2012; Yule et al. 2013; Chung
et al. 2015). We have emphasized seed banks as the ecolog-
ical setting of demographic storage, but similar dynamics
would play out in other contexts. For example, metamor-
phic stages of arthropod hosts represent obligate storage in
that hosts must survive these demographic transitions be-
fore reaching reproductive maturity. Similarly, plant hosts
must pass through seedling and juvenile stages prior to flow-
ering. Throughout both arthropod and plant life cycles, her-
itable symbionts may be lost along the way (Afkhami and
Rudgers 2008; Geib et al. 2009). Empirical estimates of sym-
biont prevalence typically come from surveys of reproduc-
tive host stages (Hilgenboecker et al. 2008; Rudgers et al.
2009; Gibert and Hazard 2013; Semmartin et al. 2015). Our
results indicate that patterns of symbiosis in reproductive
stages cannot be understood without considering interac-
tions in upstream life stages, particularly when hosts have
obligate, linear transitions through the life cycle.

Not all organisms do progress linearly through a life cy-
cle, whichmotivated our consideration of partial seed bank-
ing. Flexible entry to the seed bank strongly dilutes its im-
portance for symbiont persistence. This should also weaken
selection for symbionts to benefit their hosts during storage,
because symbiont fitness rapidly becomes insensitive to
their interactions with hosts in storage as the probability
of hosts entering storage decreases. Weak selection associ-
ated with partial seed banking may explain the substantial
variability observed in the effects of fungal endophytes on
seed bank survival and germination, including positive,
neutral, and negative effects (e.g., Novas et al. 2003; Vila-
Aiub et al. 2005; Gundel et al. 2006a, 2006b, 2009, 2010).
While partial entry makes the storage stage unimportant
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for symbiont persistence, it can continue to affect symbiont
prevalence. Ironically, in some cases seed banks are able to
modify symbiont prevalence precisely because they do not
affect symbiont persistence; this allows for negative effects
on seed stages that affect prevalence via the recruitment of
converted hosts.
We have presented obligate and partial storage as alter-

natives, but it is likely that many host life cycles include
elements of both, such as arthropods that bank eggs and
also transition through prereproductive instars. Even for
annual plants with a partial seed bank, as in our model,
seeds that bypass the storage stage must still survive and
germinate to reach the reproductive stage. To keep our the-
oretical framework as simple as possible, we assumed per-
fect recruitment of nonbanked seeds, but our model could
be expanded to include additional obligate filters on recruit-
ment to reproduction.We expect our qualitative conclusions
for obligate and facultative transitions to continue to apply
when both types are represented within a single life cycle,
but exploring their interactions in greater detail could be a
fruitful area for further work.
Formulating the model forced us to consider whether

hosts that lose symbionts during development keep their
demographic influence as a legacy effect. Legacy effects in
symbiosis are poorly understood and may arise from sev-
eral mechanisms. For example, Gundel et al. (2009) hy-
pothesized that the concentration of endophyte mycelium
in grass seeds can alter the distribution of water content
in ways that affect seed survival, regardless of endophyte vi-
ability. We found in both the obligate and partial seed-
banking models that, all else equal, positive legacy effects
(hosts retaining benefits of former symbionts) reduce sym-
biont prevalence via the recruitment of converted E2 hosts.
For an obligate storage life cycle, legacy effects cause imper-
fect retention to be more consequential at the population
level than imperfect vertical transmission. We even find
that, for partial seed banking, legacy effects can cause ben-
eficial effects on host vital rates to reduce symbiont preva-
lence. We have discovered conditions under which benefits
reduce prevalence, but the empirical literature leaves us ill-
equipped to speculate how often these conditions may be
realized. The critical next step will be to evaluate how the
potential role of symbiont legacy effects plays out in nature.
Our consideration of legacy effects was narrow in that con-
verted seeds could keep an E1 benefit or cost through seed
survival but not further into the reproductive stage. We
thus assume that even strong legacy effects are short-lived
relative to host development, which makes our conclusions
about their effects conservative.
As in all theoretical work, results should be interpreted in

light of model assumptions. We assumed that symbiont
transmission is exclusively vertical. Zerohorizontal transmis-
sion may be unrealistic. For example, in grass-endophyte
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symbioses where transmission is predominantly vertical,
low frequencies of horizontal transmission have been re-
ported (Tintjer et al. 2008; Tadych et al. 2014). We con-
ducted additional analyses that relaxed the assumption of
strictly vertical transmission and found that our main in-
ferences are robust to low levels of horizontal transmission
(≤10% of E2 seeds recruit as E1 plants). Horizontal trans-
mission can rescue symbionts from extinction if their fit-
ness effects and transmission efficiency are not adequate
for persistence via vertical transmission alone, but symbi-
ont dynamics are otherwise weakly responsive to low levels
of horizontal transmission (app. A). While rare horizontal
transmissionmay have little influence on ecological dynamics
(see also Kwiatkowski and Vorburger 2012), it could modify
selective pressures on symbionts and therefore alter evolu-
tionary dynamics (Lipsitch et al. 1996). For example, hori-
zontal transmission could weaken positive fitness feedbacks
and lead to the breakdown of host-symbiont mutualism
(Sachs et al. 2004; Sachs and Simms 2006).

Another important assumption of our theoretical frame-
work relates to the role of density dependence in host pop-
ulation dynamics. We show in appendix B that our results
apply across density-independent and density-dependent
environments, as long as E2 and E1 hosts are similarly af-
fected by density dependence. However, empirical evidence
suggests that symbiosis can influence host competitive abil-
ity (Faeth et al. 2004; Miller and Rudgers 2014). Our ap-
proach also assumes that all stages contribute equally to
population regulation, whereas it is more likely that dor-
mant stages contribute less if at all. These considerations
would give rise to a more complex influence of density de-
pendence than we have included.

Finally, our analysis assumed that the environment is
constant. Storage stages are hypothesized to be adaptations
to temporally variable environments (Evans and Dennehy
2005; Koons et al. 2008; Childs et al. 2010). While environ-
mental constancy is an obvious starting point, it may be
valuable to consider dynamics in a stochastic environment,
which sets the stage for conflict between host and symbiont.
For example, partial storage can be an adaptive bet-hedging
strategy for hosts, but it may be maladaptive for symbionts
if they lose viability during storage faster than their hosts.
Symbionts may therefore be selected to accelerate host life
cycles through storage stages and into reproductive matu-
rity (splitting our banking rate b into b2 ( b1), as has been
suggested by empirical studies (Faeth 2009). Temporal and
spatial environmental variation may also promote host-
symbiont conflict over transmission and retention strate-
gies. In a constant environment, hosts should be selected
to perfectly transmit and retain beneficial symbionts. How-
ever, if the environment fluctuates such that harboring sym-
bionts is occasionally costly (e.g., benign years or locations
in which costs of maintaining symbionts exceed their pro-
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tective benefits), then imperfect transmission and retention
may be evolutionarily stable bet-hedging strategies for hosts,
though this would decrease symbiont fitness. The model
we have developed provides a framework to explore the
adaptive dynamics of host-symbiont conflict in a stochastic
setting.
Conclusion

Ecologists aim to develop general theory that distills nature
to its simplest possible components; complexity should al-
ways be addedwith caution.We suggest that better account-
ing for life cycle complexity is a warranted addition to the-
ory for host-symbiont dynamics, as is recognized in other
types of interspecific interactions (Miller and Rudolf 2011).
Our work is motivated by the observation that host organ-
isms typically posses complex life cycles with opportunities
for symbionts to affect and be lost from hosts in various
ways over host ontogeny. We show that the addition of life
cycle complexity can qualitatively change understanding of
host-symbiont dynamics. We are optimistic that theoretical
advances such as we have presented can facilitate empirical
work by targeting key elements of host-symbiont interac-
tions that drive their coupled dynamics. Empirical studies
will be essential for understanding whether the potential con-
sequences of host demographic storage identified by our
models are realized in nature.
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